

1,3-Dipolar Cycloaddition Reactions of Stable Bicyclic and Monocyclic Azomethine Ylides: Preparative Aspects

Kurt Elender,^a Heinrich Nöth,^b Peter Riebel,^a Andreas Weber^a and Jürgen Sauer^{a,*}

^aInstitut für Organische Chemie der Universität Regensburg, D-93040 Regensburg, Germany ^bInstitut für Anorganische Chemie der Universität München, D-81377 München, Germany

Dedicated to Professor Rolf Huisgen on the occasion of his 80th birthday

Received 17 April 2000; revised 24 May 2000; accepted 25 May 2000

Abstract—Stable bicyclic, monocyclic and aromatic azomethine ylides 1, 13 and 16 add angle-strained, electron-rich and electron-poor alkynes as well as alkenes and heterocumulenes to form 1:1-adducts in highly stereoselective 1,3-dipolar cycloadditions. Unsymmetrical dipolarophiles react in a regiospecific manner. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Azomethine ylides, either prepared in situ as reactive intermediates from different precursors or stable representatives, have been studied quite thoroughly during the last two decades.^{1–5} The 1,3-dipolar cycloadditions of these azomethine ylides proceed with high regiochemical and stereochemical selectivity yielding pyrroline and pyrrolidine derivatives that can be central skeletons of numerous alkaloids.

Quite recently, we found an easy entrance to a new class of stable bicyclic azomethine ylides derived from diazanor-caradienes which could be transferred to again stable azomethine ylides in an acid-catalyzed rearrangement.^{6–9}

Using enamines as dipolarophiles we observed nonstereospecific cycloadditions indicating a two-step reaction.¹⁰ In this contribution we report on 1,3-dipolar cycloadditions of these stable azomethine ylides with angle-strained, electronrich and electron-poor 2π -component systems for which detailed kinetic data have already been presented in a recent paper.¹¹

Results

Reactions of bicyclic azomethine ylides 1

Azomethine ylides 1, 13, 16 are highly coloured compounds which in the course of 1,3-dipolar cycloadditions are

Scheme 1. 1,3-Dipolar cycloadditions of bicyclic azomethine ylides 1 with cyclooctyne (2).

Keywords: azomethine ylides; 1,3-dipolar cycloadditions; alkynes; alkenes; regiochemistry.

^{*} Corresponding author. Tel.: +49-941-943-4501; fax: +49-941-943-4946; e-mail: rudolf.vasold@chemie.uni-regensburg.de

Table 1. Data for the reaction of bicyclic azo	methine ylides 1 with cyclooctyne (2)
--	---------------------------------------

	\mathbb{R}^1	\mathbb{R}^2	mmol 1	mmol 2	ml, Solvent	Cond.	% 3	mp (°C)
a	$4-CH_3O-C_6H_4$	CH ₃	0.56	4.76	15, Ethyl acetate	70°C/2 min	89 ^a	208
b	$4-CH_3-C_6H_4$	CH ₃	0.26	1.85	10, Acetonitrile	70°C/10 min	67 ^b	195-196
с	C ₆ H ₅	Н	0.55	1.55	20, Ethyl acetate/acetone 3:1	rt/1.5 h	67 ^c	208-210
d	C_6H_5	CH ₃	0.28	0.49	10, Acetone	Reflux/1.5 h	81 ^d	175-177
e	$4-Cl-C_6H_4$	CH ₃	0.30	1.85	10, Acetonitrile	60°C/5 min	95 ^b	215-217
f	$4-CF_3-C_6H_4$	CH ₃	0.08	0.16	4, Acetone	rt/75 min	88 ^e	197-199
g	$2-C_4H_3N-CH_3$	CH ₃	0.77	1.30	10, Acetonitrile	reflux/2.5 h	69 ^f	181-182
ň	$2-C_4H_3O$	CH ₃	0.39	1.94	10, Acetonitrile	reflux/30 min	57 ^g	150-151
I	$2-C_4H_3S$	CH ₃	0.53	1.18	10, Acetone	reflux/0.5 h	$48^{\rm h}$	194-195
j	CH ₃ -S	Н	0.627	1.05	20, Ethyl acetate	rt/5 h	3j : 23 ⁱ	196-197
k	CH ₃ –S	CH ₃	1.48	5.65	50, Ethyl acetate	rt/1.5 h	3j ': 19 ⁱ 3k : 16 ^j 3k ': 15 ^j	106–107 161–162 103–104

^a Washed with petroleum ether (40-60)/diethyl ether, recrystallized from petroleum ether (40-60)/CH₂Cl₂.

^b Recrystallized from acetonitrile.

^c Recrystallized from CH₂Cl₂.

^d Filtered through silica gel 60, recrystallized from petroleum ether (40-60)/CH₂Cl₂.

^e Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from petroleum ether (40-60)/CH₂Cl₂.

^f Recrystallized from acetonitrile/ethanol 2:1.

^g Column chromatography (ethanol, silica gel 60), recrystallized from ethanol.

^h Column chromatography (CHCl₃, silica gel 60), recrystallized from petroleum ether (40–60)/ethanol.

ⁱ Column chromatography (ethyl acetate/petroleum ether (40-60) 1:5), recrystallized from ethyl acetate.

¹ Column chromatography (CH₂Cl₂/petroleum ether (40-60) 1:1), recrystallized from petroleum ether (40-60)/CH₂Cl₂.

Scheme 2. 1,3-Dipolar cycloadditions of bicyclic azomethine ylides 1 with ynamine 4.

Table 2. Data for the reaction of bicyclic azomethine ylides 1 with ynamine 4

	R^1	\mathbb{R}^2	mmol 1	mmol 4	ml, Solvent	Cond.	% 5	mp (°C)
a	$4-CH_3O-C_6H_4$	CH ₃	0.56	4.25	15, Ethyl acetate	rt/2 h	81 ^a	184–186
b	$4-CH_3-C_6H_4$	CH ₃	0.27	0.96	10, Acetonitrile	rt/5 min	64 ^b	151-156
с	C ₆ H ₅	Н	0.32	1.48	10, Ethyl acetate	rt/10 min	40°	160-162
d	C_6H_5	CH_3	0.17	0.41	5, Ethyl acetate	rt/20 min	95 ^d	171-173
e	$4-Cl-C_6H_4$	CH ₃	0.27	0.72	10, Acetonitrile	rt/5 min	87 ^e	196
f	$4-CF_3-C_6H_4$	CH ₃	0.07	0.15	4, Ethyl acetate	rt/5 min	$88^{\rm f}$	199-201
g	2-C ₄ H ₃ N-CH ₃	CH ₃	0.15	0.69	8, Ethyl acetate	55°C/4 h	43 ^g	185-186
ĥ	$2-C_4H_3O$	CH ₃	0.44	1.65	10, Ethyl acetate	rt/15 min	54 ^h	161-163
I	$2-C_4H_3S$	CH ₃	0.33	1.00	10, Ethyl acetate	rt/3 h	57 ⁱ	194-195
k	CH ₃ –S	CH ₃	0.30	1.25	20, Ethyl acetate	rt/3 h	5 k': 28 ^j	98-100

^a Column chromatography (ethyl acetate, silica gel 60), recrystallized from diethyl ether/CH₂Cl₂.

^b Precipitation induced with petroleum ether (40–60), recrystallized from diethyl ether/petroleum ether (40–60).

^c Recrystallized from ethyl acetate/diethyl ether 1:4.

^d No further purification required.

^e Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from petroleum ether (40–60)/ethyl acetate.

^f Filtered through silica gel 60, recrystallized from petroleum ether (40-60)/CH₂Cl₂.

^g Recrystallized from ethyl acetate/hexane 2:1.

^h Recrystallized from ethyl acetate/petroleum ether (40–60) 1:6.

ⁱ Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from diethyl ether/ethyl acetate.

^j Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from petroleum ether (40-60)/CH₂Cl₂.

Table 3. Data for the reaction of bicyclic azomethine ylides 1 with acetylene dicarboxylate 6

	\mathbb{R}^1	\mathbb{R}^2	mmol 1	mmol 6	ml, Solvent	Cond.	% 7	mp (°C)
a	$4-CH_3O-C_6H_4$	CH ₃	0.47	4.19	10, Acetone	70°C/2.5 h	86 ^a	184-185
b	$4-CH_3-C_6H_4$	CH ₃	0.28	0.97	10, Acetonitrile	reflux/2.5 h	69 ^b	181-182
d	C ₆ H ₅	CH ₃	0.82	3.88	10, Acetone	reflux/5 h	88°	184-185
e	$4-Cl-C_6H_4$	CH ₃	0.26	0.97	20, Acetonitrile	reflux/100 min	94 ^d	196-197
f	$4-CF_3-C_6H_4$	CH ₃	0.15	0.95	5, Acetone	60°C/4 h	82 ^e	156-157
h	$2-C_4H_3O$	CH ₃	0.44	2.41	10, Acetone	reflux/5h, rt/63 h	57 ^f	152-153
i	$2-C_4H_3S$	CH ₃	0.47	2.43	10, Acetone	reflux/5 h	70 ^g	183-184

^a Recrystallized from ethanol.

^b Recrystallized from acetonitrile.

^c Recrystallized from ethyl acetate/petroleum ether (40-60).

^d Precipitation induced with diethyl ether. Crystals recrystallized from CH₂Cl₂/petroleum ether (40-60).

^e Column chromatography (CH₂Cl₂, silica gel 60), recrystallized petroleum ether (40–60).

^f Column chromatography (ethanol/diethyl ether 1:3, silica gel 60), recrystallized from ethanol/diethyl ether 1:3.

^g Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from petroleum ether (40–60)/ethanol.

Scheme 3. 1,3-Dipolar cycloadditions of bicyclic azomethine ylides 1 with acetylene dicarboxylate 6.

transformed into colourless 1:1-adducts. So all cycloadditions performed in this contribution could be easily followed by the disappearance of the colour of the starting compounds and/or by thin-layer chromatography.

In order to be able to study the substituent effects of R^1 in the dipoles **1** in our kinetic work¹¹ according to the Hammett treatment a broader variation of R^1 was necessary; also furan, thiophene and *N*-methylpyrrole as heterocyclic substituents were included in this preparative investigation.

Cyclooctyne (2), a highly reactive alkyne in cycloadditions,¹² combines smoothly at slightly elevated temperature with azomethine ylides 1a-1k to form 1:1adducts 3a-3k (Scheme 1; Table 1). The reactions of 1j and **1k** in addition to the 'normal' adducts **3j** and **3k** also delivered the aromatic pyrrole derivatives **3j**' and **3k**' in almost equal amounts. Formally CH₃SCN was lost during these reactions. Similar observations were also reported by a Japanese group for [3+2] cycloadditions of pyridazinium dicyanomethylides with substituents OCH₃ and OC₆H₅ instead of SCH₃; in this case loss of ROCN must be postulated.¹³ Mechanistic studies to explain these results are still missing.

Also ynamine **4** proved to be a very potent dipolarophile, most reactions already occur at room temperature (Scheme 2; Table 2). With the exception of reaction $1\mathbf{k}+4$, which again leads to the aromatic pyrrole derivative $5\mathbf{k}'$ as by-product, 1:1-adducts $5\mathbf{a}-5\mathbf{i}$ were isolated in good yields.

Figure 1. Selected ¹H NMR data for cycloadducts 3, 5 and 7 derived from bicyclic azomethine ylides 1 and acetylene derivatives (δ -values in ppm).

Figure 2. NOE effects found for adduct 5d.

Already the reaction conditions of Table 3 demonstrate the lower dipolarophilic activity of dimethyl acetylenedicarboxylate (6) (Scheme 3) compared with cyclooctyne (2) and ynamine 4. In all cases including 1i 1:1-adducts are isolated in good yields under more stringent conditions.

All spectroscopic data (see Experimental) are in accord with the structure proposals **3**, **5** and **7** for the 1:1-adducts so only a few arguments need to be discussed here. The very strong and characteristic IR absorption of the cyano groups in dipoles **1** (approximately 2190 and 2150 cm⁻¹)¹¹ have almost disappeared in the 1:1-adducts **3**, **5** and **7**. The presence of the cyclopropane ring is documented by an AB-system of the protons H-1a and H-10c, respectively H-1a and H-6b, with coupling constants between 8 and 9 Hz (Fig. 1). The chemical shift difference between the two cyclopropane protons is quite small. Nevertheless, in a number of cases proton H-1a could be identified by detailed NMR experiments at lower field.^{14–16} The two geminal methyl groups at C-1 show two well-separated singlets, the *syn*-CH₃ is shielded by the six-membered ring and absorbing at higher field while the signals for the *anti*-CH₃ show higher δ -values and absorb at lower field. As would be expected, the electronic influence of substituents R¹ on the δ -values is larger for *syn*-CH₃ while the remote *anti*-CH₃ mostly show only minor shift differences when R¹ is varied.

The regiochemistry for the addition step of the unsymmetrical ynamine **4** is proven by NOE experiments (Fig. 2). Irradiation of the N(CH₃)₂-signal around 2.8 ppm only enhances the signal of the olefinic methyl group at C-6 (ca. 1.9 ppm) while the irradiation of this methyl signal enhances a number of protons nearby, for instance, those of the aromatic ring at C-6a as well as protons H-6b and H-1a but not the geminal methyl groups at C-1 thus proving the stereochemistry of the complete tricyclic ring system, as Fig. 2 demonstrates. The complete sets for the spectroscopic data of all 1:1-adducts **3**, **5** and **7** are found in Experimental and Refs. 14–16. The ¹³C chemical shifts for all carbon atoms are normal and in accordance with the structure proposal.

In Schemes 1–3 (Tables 1–3) the substituents \mathbb{R}^1 in the dipoles 1 were varied for later kinetic investigations,¹¹ three different dipolarophiles were used as test 2π -systems, the angle-strained cyclooctyne (2), the electron-rich ynamine 4 and the electron-deficient acetylene dicarboxy-late 6. In order to study also the influence of substituents in

Scheme 4. 1,3-Dipolar cycloadditions of bicyclic azomethine ylide 1b with olefinic dipolarophiles 8.

Table 4. Data for the reaction of bicyclic azomethine ylide 1b with olefinic dipolarophiles 8

8/9	R^1	\mathbb{R}^2	R ³	R^4	mmol 1b	mmol 8	Cond.	% 9	Mp (°C)
a	OC ₂ H ₅	Н	OC ₂ H ₅	Н	0.31	1.01	rt/15h, 50°C/4 h	87 ^a	177
b	$N(CH_3)_2$	Н	OC ₂ H ₅	Н	0.48	0.62	rt/fast	100 ^b	175-176
с	$N(CH_3)_2$	Н	SCH ₃	Н	0.41	0.74	rt/5 min	100 ^c	157
d	$N(CH_2)_4$	Н	(CH ₂)4	0.36	0.46	rt/72 h	56 ^d	175
e	CO–N(CH ₃)–	-CO	H	Н	0.28	2.78	80°C/9 h	45 ^e	238

^a Column chromatography (ethyl acetate/petroleum ether (40-60), silica gel 60), recrystallized from hexane.

^b No further purification required.

^c Washed with diethyl ether.

^d Column chromatography (ethyl acetate/petroleum ether (40-60), silica gel 60), recrystallized from CH₂Cl₂/hexane.

^e Excess of **8e** removed by sublimation, further purification by column chromatography (ethyl acetate/petroleum ether (40–60), silica gel 60), recrystallized from CH₂Cl₂/hexane.

Scheme 5. 1,3-Dipolar cycloadditions of bicyclic azomethine ylides 1 with hetero dipolarophiles 10.

Table 5. Data for the reaction of bicyclic azomethine ylides 1 with hetero dipolarophiles 10

	R	Х	Y	mmol 1	mmol 10	ml, Solvent	Cond.	% 11	mp (°C)
a	$4-CH_3-C_6H_4$	Cl ₃ CCH	0	0.62	10.6	10, Acetonitrile	40°C/8 h	40^{a}	151
b	$4-CH_3-C_6H_4$	0=C	N-C ₆ H ₅	0.29	3.22	10, Acetonitrile	rt/138 h	67 ^b	179
с	$4-CH_3-C_6H_4$	S=C	N-C ₆ H ₅	0.28	3.01	10, Acetonitrile	rt/54d	21 ^c	184
d	C ₆ H ₅	Cl ₂ C	S	0.49	1.05	10, CH_2Cl_2	rt/75 min	65 ^d	117

^a Product precipitates from the reaction mixture. Washed with acetonitrile.

^b Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from diethyl ether/hexane.

^c Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from CH₂Cl₂/hexane.

^d Recrystallized from petroleum ether (40-60)/ethyl acetate.

the dipolarophiles on the reaction rate¹¹ we kept R^1 in the azomethine ylides **1** constant and varied the dipolarophile; for practical purposes we used the ditolyl derivative **1b** as 4π -partner. Scheme 4 and Table 4 offer the data for olefinic dipolarophiles, Scheme 5 and Table 5 those for dipolarophiles with hetero double bonds.

Ketene aminals are superdienophiles in Diels-Alder reactions with inverse electron demand, as demonstrated for 1,2,4,5-tetrazines as dienes by kinetics.¹² Also azomethine ylide 1b reacts with ketene aminals in a LUMO_{dipole}-HOMO_{dipolarophile}-controlled reaction.¹¹ While ketene-O,O-aminal 8a after a reaction period of 15 h at room temperature still needs some gentle heating (4 h, 50° C) to bring the reaction to completion, ketene-N,Oaminal **8b** and ketene-N,S-aminal **8c** cycloadd to azomethine ylide 1b almost instantaneously at room temperature. The colourless adducts 9a-c melt with formation of red liquids, indicating some extent of cycloreversion. In polar solvents 9b and 9c form intense red solutions, typical for the free dipole 1b. In acetonitrile solution of **3b** at 60°C a 5.8-fold excess of cyclooctyne (2) traps free 1b as cyclooctyne adduct 3b in 52% yield, identical with an authentic sample of 3b.

Enamine **8d** still proves to be a reactive dipolarophile yielding 56% analytically pure 1:1-adduct **9d**. In contrast the 1,3-dipolar cycloaddition of **1b** with the electron-poor *N*-methylmaleimide (**8e**) needs refluxing acetonitrile for 9 h to give a lower yield of adduct **9e** (45%).

Structure proof for the ketene aminal adducts 9a-c mainly comes from NMR data (see Experimental).¹⁵ The regiochemistry follows from typical NOE effects especially for H- α and H- β at C-6 (Fig. 3). This technique also demonstrates the *endo*-orientation of the N(CH₃)₂-group in **9b** and **9c**.¹⁵ The crystal structure analysis of the enamine adduct **9d** proves the *endo*-configuration also for the pyrrolidin-1-yl substituent, in analogy to the ketene acetal adducts **9b** and **9c**.¹⁷ Finally, the electron-poor *N*-methylmaleimide **8e** prefers the *endo*-configuration in the transition state of the 1,3-dipolar addition, too. Fig. 3 presents some selected NOE effects for **9e** which are only compatible with this structure proposal.

In a limited number of cases we were successful in using hetero double bond systems and heterocumulenes as 2π -components in 1,3-dipolar cycloadditions with azomethine ylides **1b** and **1d**.

Trichloroacetaldehyde (10a) formed a 1:1-adduct 11a, which dropped out from acetonitrile solution in analytically pure form in 40% yield. Phenyl isocyanate (10b) and phenyl isothiocyanate (10c) reacted with 1b in acetonitrile at room

Figure 3. Selected NOE effects for adducts 9a-c and 9e from azomethine ylide 1b with olefinic dipolarophiles 8 (R=4-CH₃-C₆H₄).

Figure 4. Selected NOE effects for the chloral adduct 11a and benzyne adduct 12 (R=4-CH₃-C₆H₄).

Scheme 6. Addition of phenyl isocyanate (10b) to azomethine ylide 1b with formation of adduct 11b.

temperature. 67% of **11b** and 21% of **11c** were collected after 138 h, respectively, 54 d as colourless 1:1-adducts. Finally, thiophosgene (**10d**) decolourized a solution of **1d** in dichloromethane at room temperature within 60 min. The faintly pink 1:1-adduct **11d** which was isolated as the only regioisomer in 65% yield melted at 117°C under cyclo-

reversion with formation of a red liquid. Cycloreversion also occurs slowly in solution, so **11d** could only be recrystallized in inert solvents in the presence of an excess of thiophosgene (**10d**).

Again NOE effects in the NMR spectra of **11a** were helpful to assign the stereochemistry of the chloral adduct 11a which is carrying even the bulky trichloromethyl group in an endo-arrangement (Fig. 4). NMR data alone allowed no conclusive decision for the structure assignment of 11b and 11d especially with regard to its stereochemistry. Fortunately we were successful in growing single crystals of 11b suitable for crystal structure analysis.¹⁸ As Scheme 6 demonstrates, phenyl isocyanate approaches the azomethine ylide 1b in such a way that finally the newly formed fivemembered heterocyclic ring appears in a cis-arrangement to the cyclopropane ring. Interestingly, this *cis*-arrangement almost cancels the 'normal' dissimilarity of the two methyl groups at C-1 which now appear as two narrow singlets at $\delta = 1.17$ and 1.20 ppm; the cyclopropane protons show the usual AB-system at 2.10 and 2.33 ppm with J=9.3 Hz. As we also find the same NMR pattern for the analogue protons of the phenyl isothiocyanate adduct 11c (AB-system at δ =2.02 and 2.34 ppm, J=9.2 Hz, methyl singlets at $\delta = 1.19$ and 1.25 ppm) we propose the same stereochemical arrangement for **11c** as proven for **11b** by crystal structure analysis. Finally having no X-ray data at hand for the thiophosgene adduct 11d we interpret the NMR data (see Experimental) in favour of regioisomer **11d**.¹⁴

Benzyne, generated from diazotated anthranilic acid in situ, could be trapped by azomethine ylide **1b** (61% yield **12**, Fig. 4). The colourless 1:1-adduct **12** offers no structural

Scheme 7. 1,3-Dipolar cycloadditions of monocyclic azomethine ylides 13 with cyclooctyne (2).

Table 6. Data for the reaction of monocyclic azomethine ylides 13 with cyclooctyne (2)

13/14	R	mmol 13	mmol 2	ml, Solvent	Cond.	% 14	Mp (°C)
a	$4-CH_3O-C_6H_4$	0.32	0.44	10, Acetonitrile	rt/197 h	a	_b
b	$4-CH_3-C_6H_4$	0.25	0.48	15, Acetonitrile	60°C/6 h	85 ^c	131-133
d	C ₆ H ₅	0.46	0.79	$10, CH_2Cl_2$	reflux/3 h	79 ^d	166-167
e	4-Cl-C ₆ H ₄	0.19	0.33	10. Acetonitrile	rt/22 h	51 ^e	151
f	$4-CF_3-C_6H_4$	0.09	0.18	5. Acetonitrile	rt/16 h	$46^{\rm f}$	154
h	$2-C_4H_3O$	0.14	0.71	10, Acetonitrile	60°C/2 h	74 ^g	160-161

^a Column chromatography (CH₂Cl₂, silica gel 60), product could not be crystallized, contains solvent.

^b Yellowish oil.

^c Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from ethyl acetate/hexane.

^d Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from petroleum ether (40-69)/diethyl ether/CH₂Cl₂.

^e Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from methanol.

^f Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from methanol.

^g Column chromatography (CH₂Cl₂/petroleum ether (40-60) 5:1, silica gel 60), product washed with hexane/CH₂Cl₂ 10:1.

Scheme 8. 1,3-Dipolar cycloadditions of monocyclic azomethine ylides 13 with ynamine 4.

Table 7. Data for the reaction of monocyclic azomethine ylides 13 with ynamine 4

13/15	R	mmol 13	mmol 4	ml, Solvent	Cond.	% 15	Mp (°C)
a	$4-CH_3O-C_6H_4$	0.20	0.39	10, Acetonitrile	40°C/60 min	65 ^a	173-174
b	$4-CH_3-C_6H_4$	0.26	1.13	10, Acetonitrile	40°C/10 min	56 ^b	129-131
d	C ₆ H ₅	0.52	1.20	$10, CH_2Cl_2$	rt/30 min	50°	161
e	$4-Cl-C_6H_4$	0.19	0.42	10, Acetonitrile	rt/45 min	70^{d}	177
f	$4-CF_3-C_6H_4$	0.16	0.32	10, Acetonitrile	rt/50 min	54 ^d	178 - 180
g	$2-C_4H_3N-CH_3$	0.14	0.35	10, Acetonitrile	60°C/2 h	37 ^e	160-161
ĥ	$2-C_4H_3O$	0.33	0.80	10, Acetonitrile	60°C/5 min	43 ^f	156-157

^a Column chromatography (ethyl acetate/petroleum ether (40–60), silica gel 60), recrystallized from diethyl ether/hexane.

 $^{\rm b}$ Column chromatography (CH_2Cl_2, silica gel 60), recrystallized from ethanol/water.

^c Column chromatography (diethyl ether/hexane 1:1, silica gel 60), recrystallized from diethyl ether/hexane.

^d Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from CH₂Cl₂/hexane.

^e Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from ethyl acetate/hexane.

^f Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from ethyl acetate.

problems, ¹H and ¹³C chemical shifts as well as the coupling constants are as to be expected (see Experimental).¹⁵

Reactions of monocyclic azomethine ylides 13

Monocyclic azomethine ylides **13** showed similar 1,3dipolar reactivity compared with the bicyclic representatives **1**. This is clearly documented by the reaction conditions in the following tables and expressed in quantitative data by the rate constants resulting from our kinetic study.¹¹

Scheme 7 and Table 6 as well as Scheme 8 and Table 7 summarise the reactions of azomethine ylide **13** with cyclooctyne (**2**) and ynamine **4**. For structure elucidation we again used IR data in combination with ¹H and ¹³C NMR spectroscopy, NOE effects confirmed the stereo-chemistry (see Experimental).¹⁴⁻¹⁶

Also the cycloadditions of **13** with acetylene dicarboxylate **6**, benzyne and ketene-O,O-aminal **8a** followed the expected route to form 1:1-adducts **19**, **20** and **21** (Fig. 5). Chemical shift data, coupling constants and NOE effects again were helpful tools for the structure elucidation (see Experimental).^{14–16}

Reactions of aromatic azomethine ylides 16

In order to test also the substituent influence on the rate of 1,3-dipolar cycloadditions of aromatic azomethine ylides¹¹ we included representative dipoles **16** of the pyridazinium type in our investigation.

Scheme 9 and Table 8 as well as Scheme 10 and Table 9 summarize the reactions performed in this contribution. Substituents R were varied to allow the Hammett treatment.¹¹ The more stringent reaction conditions in Tables 8 and 9 already indicate a definitely lower dipole activity of the aromatic azomethine ylides **16**. In analogy to earlier examples in this paper (see Scheme 1) elimination of CH₃SCN was observed for the reaction of **16f** with cyclooctyne (**2**) leading to the aromatic pyrrole derivative **17f** as the only isolable product in 77% yield.

Structure proof for adducts **17** and **18** again was possible using spectroscopic methods as before (see Experimental).^{14–16}

Conclusion

Stable bicyclic, monocyclic and aromatic azomethine ylides

Figure 5. 1,3-Dipolar cycloadditions of azomethine ylides 13 with acetylene dicarboxylate 6, benzyne and ketene-O,O-aminal 8a to yield adducts 19–21.

Scheme 9. 1,3-Dipolar cycloadditions of aromatic azomethine ylides 16 with cyclooctyne (2).

Table 8. Data for the reaction of aromatic azomethine ylides 16 with cyclooctyne (2)

16/17	R	n	mmol 16	mmol 2	ml, Solvent	Cond.	% 17	Mp (°C)
a	$4-CH_3O-C_6H_4$	5	0.34	3.37	60, Ethyl acetate	rt/65h, 70°C/24 h	46 ^a	146-147
b	$4-CH_3-C_6H_4$	5	0.34	0.86	10, Acetonitrile	reflux/9 h	55 ^b	187-189
с	C ₆ H ₅	5	0.48	1.74	30, Ethyl acetate	reflux/4.5 h	61 ^c	175-177
d	C ₆ H ₅	6	0.34	1.87	30, Ethyl acetate	reflux/3 h	67 ^d	178 - 180
e	$4-CF_3-C_6H_4$	5	0.20	0.62	10, Acetonitrile	reflux/3.5 h	58 ^e	132-133
f	SCH ₃	5	0.79	3.48	30, Ethyl acetate	70°C/15 min	77 ^f	190–191

^a Column chromatography (ethyl acetate/hexane 1:4, silica gel 60).

^b Column chromatography (CH₂Cl₂/hexane 2:1, silica gel 60), recrystallized from hexane/ethyl acetate 5:1.

^c Column chromatography (CH₂Cl₂, silica gel 60), recrystallized from ethyl acetate.

^d Recrystallized from ethyl acetate.

^e Recrystallized from hexane/ethyl acetate 10:1.

^f Column chromatography (CH₂Cl₂/hexane 1:1, silica gel 60), recrystallized from hexane.

Scheme 10. 1,3-Dipolar cycloadditions of aromatic azomethine ylides 16 with acetylene dicarboxylate 6.

Table 9. Data for the reaction of aromatic azomethine ylides 16 with acetylene dicarboxylate 6

16/18	R	n	mmol 16	mmol 6	ml, solvent	cond.	% 18	Mp (°C)
a	$4-CH_3O-C_6H_4$	5	0.14	0.28	15, Acetonitrile	reflux/8 h	85 ^a	143-144
b	$4-CH_3-C_6H_4$	5	0.58	0.86	15, Acetonitrile	reflux/8 h	98 ^b	189-190
с	C ₆ H ₅	5	0.61	1.01	10, Acetonitrile	reflux/19 h	75 ^a	155-156
d	C ₆ H ₅	6	0.12	0.31	10, Acetonitrile	reflux/2.75 h	77 ^c	183-184
e	$4-CF_3-C_6H_4$	5	0.16	0.33	10, Acetonitrile	reflux/9h, rt/15 h	64 ^d	169-170

^a Column chromatography (CH₂Cl₂/ethyl acetate 40:1, silica gel 60).

^b Column chromatography (CH₂Cl₂, silica gel 60).

^c Column chromatography (CH₂Cl₂/hexane 6:1, silica gel 60).

^d Column chromatography (CH₂Cl₂/petroleum ether (40-60) 3:1, silica gel 60).

1, **13** and **16** are versatile 1,3-dipoles which cycloadd to a variety of dipolarophiles with double and triple bonds as 2π -systems. Hetero double bonds and hetero cumulenes could be included into the bunch of dipolarophiles. All cycloadditions studied proceeded with high regio and stereoselectivity. Influences of substituents in dipoles and dipolarophiles on the reaction rate already show up in the experimental conditions applied and are described in a recent paper.¹¹

Experimental

General

IR spectra were recorded with a Beckmann Acculab I. NMR spectra were obtained with a Bruker AC250 and ARX400 (250 MHz/400 MHz for ¹H and 63 MHz/101 MHz for ¹³C). The degree of substitution of the C atoms was determined by the DEPT-135/90/45 methods. Mass spectra were recorded

either with an ionizing voltage of 70 eV by electron impact with a Varian CH90 instrument or by field desorption with a Varian 311A instrument. Melting points were determined with a Büchi melting point apparatus and are uncorrected. Elemental analyses were performed in the microanalytical laboratory of the University of Regensburg. For analytical thin layer chromatography (TLC) precoated plastic sheets (POLYGRAM SIL G/UV254, Macherey-Nagel) were used. Silica gel 60 (particle size 0.040–0.063 mm, Merck) was used for flash column chromatography (fcc). Cycloaddition reactions were carried out under an atmosphere of nitrogen in solvents as presented in Tables 1–9 dried according to standard procedures before use.

All azomethine ylides **1**, **13** and **16** were prepared according to literature procedures.^{9,14–16} Amounts of starting materials and products, reaction conditions, yields and melting points are presented in Tables 1-9 and will not be repeated in the Experimental.

General procedure for the cycloadditions

To a solution of 1a-k, 13a, b,d-f or 16a-f in a dry solvent protected by an atmosphere of nitrogen the dipolarophile was added. The mixture was stirred at ambient or elevated temperature as described in Tables 1–9 until complete discolouration of the solution or until no more reaction could be detected by TLC. After removal of the solvent in vacuo, the crude reaction products were purified as described in Tables 1–9 for the different reactions.

2,10b-Bis-(4-methoxy-phenyl)-1,1-dimethyl-1,1a,5,6,7,8, 9,10,10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3adiaza-cycloocta[b]cyclopropa[e]indene-4,4-dicarbo**nitrile (3a).** ¹H NMR (400 MHz, CDCl₃): δ =0.42 (s, 3H, syn-H₃CCCH₃), 0.97-1.02 (m, 1H, CH₂), 1.26-1.35 (m, 3H, CH₂), 1.38 (s, 3H, anti-H₃CCCH₃), 1.44–1.55 (m, 2H, CH₂), 1.77 (s, 2H, cyclopropyl-H), 1.77–1.89 (m, 2H, CH₂), 2.37-2.51 (m, 4H, CH₂), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.84–6.88 (m, 2H, aryl-H), 6.91–6.95 (m, 2H, aryl-H), 7.49-7.53 (m, 2H, aryl-H), 7.76-7.79 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 17.4$ (syn-H₃CCCH₃), 20.5 (cyclopropyl-CH), 23.5 (C-1), 24.3 (CH₂), 25.4 (CH₂), 25.5 (CH₂), 25.6 (cyclopropyl-CH), 25.9 (CH₂), 27.3 (anti-H₃CCCH₃), 27.8 (CH₂), 29.4 (CH₂), 55.2 (OCH₃), 55.3 (OCH₃), 68.7, 69.9, 112.3, 113.4, 113.9, 114.1, 125.4, 127.2, 127.4, 129.6, 136.6, 149.2, 152.9, 158.8, 160.9 ppm. IR (KBr): $\tilde{\nu}$ =3080–2880, 1610, 1510, 1460, 1300,1170, 1030, 845 cm⁻¹. UV/Vis (dioxane): $\lambda_{\max} (\epsilon) = 238$ (16 900), 257 (14 700), 275 (14 200), 284 (14 000) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z(%)=506.0 (6) [M⁺], 439.0 (31), 438 (100), 367.9 (32). C₃₂H₃₄N₄O₂ (506.6): calcd C 75.86, H 6.76, N 11.06; found C 75.30, H 6.72, N 11.00.

1,1-Dimethyl-2,10b-di-*p*-tolyl-1,1a,5,6,7,8,9,10,10b,10cdecahydro-*cis*-1a-*transoid*-10b,10c-3,3a-diaza-cycloocta[*b*]cyclopropa[*e*]indene-4,4-dicarbonitrile (3b). ¹H NMR (250 MHz, CDCl₃): δ =0.40 (s, 3H, *syn*-H₃CCCH₃), 0.94–1.17 (m, 1H, CH₂), 1.18–1.66 (m, 5H, CH₂), 1.37 (s, 3H, *anti*-H₃CCCH₃), 1.66–1.99 (m, 2H, CH₂), 1.78 (s, 2H, cyclopropyl-H), 2.20–2.60 (m, 4H, CH₂), 2.32 (s, 3H, tolyl-CH₃), 2.37 (s, 3H, tolyl-CH₃), 7.06–7.30 (m, 4H, aryl-H), 7.43–7.56 (m, 2H, aryl-H), 7.65–7.79 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =17.43 (*syn*-H₃CCCH₃), 20.67 (cyclopropyl-CH), 21.00 (tolyl-CH₃), 21.35 (tolyl-CH₃), 23.59 (C-1), 24.44 (CH₂), 25.61 (2C, CH₂), 25.75 (cyclopropyl-CH), 26.07 (CH₂), 27.33 (*anti*-H₃CCCH₃), 27.81 (CH₂), 29.56 (CH₂), 68.89, 70.26, 112.36, 114.12, 125.98, 126.03, 128.91, 129.25, 134.33; 137.13, 139.73, 141.67, 149.04, 152.48 ppm. IR (KBr): $\tilde{\nu}$ =3040, 2990, 2940, 2870, 1460, 1450, 1065, 815, 805 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=228 (21 800), 291 (8900) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=474 (19) [M⁺], 447 (21) [M⁺-HCN], 407 (31), 406 (100), 336 (34), 185 (19) [Ylid⁺-C₇H₇CN-C(CN)₂], 184 (30), 118 (20), 90 (34), 65 (22), 41 (24). C₃₂H₃₄N₄ (474.7): calcd C 80.98, H 7.22, N 11.80; found C 80.68, H 7.10, N 11.79.

2,10b-Diphenyl-1,1a,5,6,7,8,9,10,10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diaza-cycloocta[b]cyclopropa[e]indene-4,4-dicarbonitrile (3c). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.65$ (ddd, 1H, ²J=5.0 Hz, ³J=5.3 Hz, ³J= 5.6 Hz, syn-cyclopropyl-H), 1.18-1.56 (m, 6H, CH₂), 1.36 $(ddd, 1H, {}^{2}J=5.0 Hz, {}^{3}J=9.5 Hz, {}^{3}J=8.2 Hz, anti-cyclopro$ pyl-H), 1.81–1.87 (m, 2H, CH₂), 1.94 (ddd, 1H, ³*J*=5.6 Hz, ${}^{3}J=7.8$ Hz, ${}^{3}J=8.2$ Hz, cyclopropyl-H), 2.09 (ddd, 1H, ${}^{3}J=5.3$ Hz, ${}^{3}J=7.8$ Hz, ${}^{3}J=9.5$ Hz, cyclopropyl-H), 2.45– 2.60 (m, 4H, CH₂), 7.24–7.53 (m, 8H, aryl-H), 7.88–7.95 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =10.8 (cyclopropyl-CH), 12.3 (C-1), 16.0 (cyclopropyl-H), 24.5 (CH₂), 25.5 (CH₂), 25.8 (CH₂), 26.0 (CH₂), 28.1 (CH₂), 29.2 (CH₂), 66.7, 70.7, 112.4, 113.2, 125.9, 127.4, 127.9, 128.3, 128.5, 128.6, 129.8, 136.5, 142.4, 148.6, 154.9 ppm. IR (KBr): $\tilde{\nu}$ =3095, 3070, 3030, 2940, 2870, 1490, 1465, 1450, 1395, 1275, 1160, 1080, 1050, 1035, 1015, 930, 780, 705 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=247 (12 600), 274 (8770) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=418.4 (85) [M⁺], 391.4 (100) [M⁺-HCN], 348.3 (10), 341.3 (38) $[M^+ - C_6H_5]$, 314.3 (57), 232.1 (30), 196.0 (19), 181.0 (23), 142.9 (17), 129.9 (12), 114.9 (10), 103.9 (11), 77.0 (15) $[C_6H_5]$. $C_{28}H_{26}N_4$ (418.5): calcd C 80.36, H 6.26, N 13.39; found C 79.98, H 6.10, N 13.21.

1,1-Dimethyl-2,10b-diphenyl-1,1a,5,6,7,8,9,10,10b,10cdecahydro-cis-1a-transoid-10b,10c-3,3a-diaza-cycloocta[b]cyclopropa[e]indene-4,4-dicarbonitrile (3d). ¹H NMR (400 MHz, CDCl₃): δ =0.38 (s, 3H, *syn*-*H*₃CCCH₃), 0.97-1.03 (m, 1H, CH₂), 1.23-1.37 (m, 3H, CH₂), 1.39 (s, 3H, anti-H₃CCCH₃), 1.46–1.56 (m, 2H, CH₂), 1.76–1.90 (m, 2H, CH₂), 1.80 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.84 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 2.38–2.52 (m, 4H, CH₂), 7.23-7.44 (m, 6H, aryl-H), 7.61-7.64 (m, 2H, aryl-H), 7.81-7.84 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ=17.4 (syn-H₃CCCH₃), 20.6 (cyclopropyl-CH), 23.6 (C-1), 24.3 (CH₂), 25.4 (cyclopropyl-CH), 25.5 (CH₂), 25.5 (CH₂), 25.9 (CH₂), 27.2 (anti-H₃CCCH₃), 27.8 (CH₂), 29.5 (CH₂), 68.7, 70.3, 112.2, 114.0, 126.0, 127.5, 128.2, 128.4, 128.5, 129.6, 136.8, 144.5, 148.9, 152.4 ppm. IR (KBr): $\tilde{\nu}$ =3070–2870, 1600, 1445, 1270, 1070, 910, 775, 710 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=222$ (21 100), 247 (11 100), 286 (7430) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=447.1 (34), 446.2 (100) [M⁺], 419.1 (47), 378.1 (71), 369.1 (37), 171.1 (57), 170.1 (70), 67.1 (33). C₃₀H₃₀N₄ (446.6): calcd C 80.68, H 6.77, N 12.55; found C 80.46, H 6.79, N 12.63.

2,10b-Bis-(4-chloro-phenyl)-1,1-dimethyl-1,1a,5,6,7,8,9, 10,10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3adiaza-cycloocta[b]cyclopropa[e]indene-4,4-dicarbonitrile (3e). ¹H NMR (400 MHz, CDCl₃): δ =0.35 (s, 3H, syn-H₃CCCH₃), 0.96–1.11 (m, 1H, CH₂), 1.20–1.45 (m, 3H, CH₂), 1.38 (s, 3H, anti-H₃CCCH₃), 1.45-1.63 (m, 2H, CH₂), 1.72–1.93 (m, 2H, CH₂), 1.77 (d, 1H, ³J=8.3 Hz, cyclopropyl-H), 1.82 (d, 1H, ${}^{3}J$ =8.3 Hz, cyclopropyl-H), 2.36–2.54 (m, 4H, CH₂), 7.30–7.43 (m, 4H, aryl-H), 7.52-7.61 (m, 2H, aryl-H), 7.71-7.80 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 17.42$ (syn-H₃CCCH₃), 20.30 (cyclopropyl-CH), 23.60 (C-1), 24.32 (CH₂), 25.20 (cyclopropyl-CH), 25.44 (2C, CH₂), 25.92 (CH₂), 27.12 (anti-H₃CCCH₃), 27.68 (CH₂), 29.59 (CH₂), 68.56, 69.88, 111.91, 113.77, 126.46, 127.18, 127.30, 128.47, 128.80, 133.47, 135.03, 135.81, 143.07, 148.27, 151.39 ppm. IR (KBr): $\tilde{\nu}$ =2980, 2930, 2860, 1485, 1460, 1450, 1410, 1110, 1085, 1060, 1005, 835, 810 cm⁻¹. UV/ Vis (dioxane): λ_{max} (ϵ)=231 (25 000), 294 (9600) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=516 (65), 515 (35), 514 (95) [M⁺], 499 (11) [M⁺-CH₃], 487 (27)[M⁺-HCN], 448 (39), 446 (58), 403 (45) [M⁺-C₆H₄Cl], 206 (32), 205 (54) [Ylid⁺ $-ClC_6H_4CN-C(CN)_2$], 204 (88), 203 (100), 190 (33), 189 (30), 137 (39), 136 (37), 67 (66), 55 (30), 40 (52), 35 (68). C₃₀H₂₈Cl₂N₄ (515.5): calcd C 69.88, H 5.48, N 10.87; found C 69.80, H 5.49, N 10.88.

2,10b-Bis-(4-trifluoromethyl-phenyl)-1,1-dimethyl-1,1a, 5,6,7,8,9,10,10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diaza-cycloocta[b]cyclopropa[e]indene-4,4-dicar**bonitrile (3f).** ¹H NMR (250 MHz, CDCl₃): δ =0.32 (s, 3H, syn-H₃CCCH₃), 1.07–1.24 (m, 1H, CH₂), 1.25–1.41 (m, 3H, CH₂), 1.41 (s, 3H, anti-H₃CCCH₃), 1.45–1.75 (m, 2H, CH₂), 1.82–1.93 (m, 2H, CH₂), 1.84 (d, 1H, ${}^{3}J$ =8.3 Hz, cyclopropyl-H), 1.91 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 2.37-2.60 (m, 4H, CH₂), 7.62-7.69 (m, 6H, aryl-H), 7.76–7.95 (m, 2H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =3010–2870, 2940, 1610, 1415, 1325, 1170, 1120, 1070, 1015, 855 cm⁻¹ UV/Vis (dioxane): λ_{max} (ϵ)=226 (22 900), 294 (7720) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=582.9 (24) [M⁺], 581.9 (65), 513.8 (35), 238.9 (67), 237.8 (100), 176.9 (32), 67.2 (69), 41.2 (40). C₃₂H₂₈N₄F₆ (582.6): calcd C 65.97, H 4.84, N 9.62; found C 65.26, H 4.72, N 9.43.

1,1-Dimethyl-2,10b-bis-(1-methyl-1H-pyrrol-2-yl)-1,1a, 5,6,7,8,9,10,10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diaza-cycloocta[b]cyclopropa[e]indene-4,4-dicar**bonitrile** (**3g**). ¹H NMR (250 MHz, CDCl₃): δ =0.34 (s, 3H, syn-H₃CCCH₃), 1.11 (s, 3H, anti-H₃CCCH₃), 1.44-1.64 (m, 6H, CH₂), 1.75–1.90 (m, 2H, CH₂), 1.98 (d, 1H, ³*J*=9.1 Hz, cyclopropyl-H), 2.08 (d, 1H, ${}^{3}J=9.1$ Hz, cyclopropyl-H), 2.34-2.64 (m, 4H, CH₂), 3.78 (s, 3H, pyrryl-CH₃), 3.91 (s, 3H, pyrryl-CH₃), 5.81 (dd, 1H, pyrryl-H), 6.01 (dd, 1H, pyrryl-H), 6.09 (dd, 1H, pyrryl-H), 6.39 (dd, 1H, pyrryl-H), 6.66–6.70 (m, 2H, pyrryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ=15.7 (syn-H₃CCCH₃), 22.2 (CH₂), 25.3 (cyclopropyl-CH), 26.5 (CH₂), 26.6 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 28.8 (anti-H₃CCCH₃), 31.4 (C-1), 32.3 (CH₂), 35.1 (cyclopropyl-CH), 37.4 (pyrryl-CH₃), 38.2 (pyrryl-CH₃), 58.8, 70.0, 107.2, 107.5, 111.2, 112.2, 114.7, 118.3, 121.4, 126.38, 126.43, 127.5, 129.6, 138.7, 144.1 ppm. IR (KBr): $\tilde{\nu}$ =3120, 2940, 2870, 2250, 1610, 1530, 1465, 1440, 1370, 1355, 1330, 1295, 1240, 1100, 1055, 730, 720 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=263 (8610), 308 (12 600) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m*/*z* (%)=452.5 (79) [M⁺], 437.5 (11) [M⁺-CH₃], 425.5 (45) [M⁺-HCN], 384.4 (100), 330.3 (15), 266.2 (27), 227.1 (20), 173.0 (16) 159.9 (21), 122.0 (67), 105.9 (22), 93.9 (10), 81.0 (14). C₂₈H₂₂N₆ (452.5): calcd C 74.32, H 7.13, N 18.57; found C 73.90, H 6.94, N 17.84.

2,10b-Di-furan-2-yl-1,1-dimethyl-1,1a,5,6,7,8,9,10,10b, 10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diaza-cycloocta[b]cyclopropa[e]indene-4,4-dicarbonitrile (3h). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.75$ (s, 3H, syn-H₃CCCH₃), 1.31 (s, 3H, anti-H₃CCCH₃), 1.26-1.59 (m, 6H, CH₂), 1.69 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.77–1.86 (m, 2H, CH₂), 1.89 (d, 1H, ³J=8.3 Hz, cyclopropyl-H), 2.43–2.51 (m, 4H, CH₂), 6.33 (dd, 1H, furyl-H), 6.36 (dd, 1H, furyl-H), 6.46 (dd, 1H, furyl-H), 6.78 (dd, 1H, furyl-H), 7.39 (dd, 1H, furyl-H), 7.49 (dd, 1H, furyl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 15.9$ (syn-H₃CCCH₃), 18.7 (cyclopropyl-CH), 23.7 (cyclopropyl-CH), 24.5 (CH₂), 24.7 (C-1), 25.2 (CH₂), 25.6 (CH₂), 25.9 (CH₂), 27.4 (anti-H₃CCCH₃), 27.8 (CH₂), 28.5 (CH₂), 67.3, 69.3, 108.1, 109.3, 110.6, 111.58, 111.60, 113.5, 128.6, 142.0, 142.5, 143.6, 147.0, 151.6, 154.5 ppm. IR (KBr): v=3160, 3130, 3080, 2940, 2880, 1610, 1495, 1465, 1160, 1070, 1020, 900, 820, 750 cm⁻ UV/Vis (dioxane): λ_{max} (ϵ)=292 (16 000) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=426.3 (100) [M⁺], 411.2 (10) $[M^+-CH_3]$, 358.2 (14), 317.1 (27), 240.0 (19), 160.9 (39), 131.9 (10), 93.9 (15). C₂₆H₂₆N₄O₂ (426.4): calcd C 73.24, H 6.15, N 13.14; found C 73.37, H 6.31, N 13.11.

1,1-Dimethyl-2,10b-di-thiophen-2-yl-1,1a,5,6,7,8,9,10, 10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diazacycloocta[b]cyclopropa[e]indene-4,4-dicarbonitrile (3i). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.81$ (s, 3H, syn-H₃CCCH₃), 1.32 (s, 3H, anti-H₃CCCH₃), 1.25-1.64 (m, 6H, CH₂), 1.79 (d, 1H, ³J=8.3 Hz, cyclopropyl-H), 1.91 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.77–1.93 (m, 2H, CH₂), 2.43–2.54 (m, 4H, CH₂), 6.92–6.96 (m, 1H, thienyl-H), 7.03-7.06 (m, 2H, thienyl-H), 7.25-7.28 (m, 1H, thienyl-H), 7.32-7.37 (m, 2H, thienyl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 17.1$ (syn-H₃CCCH₃), 20.8 (cyclopropyl-CH), 24.5 (CH₂), 25.0 (C-1), 25.6 (CH₂), 25.7 (CH₂), 26.0 (CH₂), 27.5 (cyclopropyl-CH), 27.5 (anti-H₃CCCH₃), 27.7 (CH₂), 29.5 (CH₂), 68.7, 69.7, 111.8, 113.1, 124.8, 125.5, 126.3, 126.5, 127.1, 127.9, 128.1, 142.5, 147.9, 148.1, 148.4 ppm. IR (KBr): $\tilde{\nu}$ =3100-2870, 2930, 1440, 1240, 1065, 845, 720, 710, 700 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=250 (13 800), 306 (9990) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=458.2 (90) $[M^+]$, 390.1 (100), 333.2 (53), 320.1 (45), 262.9 (36), 256.0 (40), 177.3 (51), 176.1 (71), 135.1 (35), 129.1 (44), 110.2 (52), 97.1 (48), 77.0 (31), 67.1 (41), 45.1 (32), 41.1 (57), 39.1 (40). C₂₆H₂₆N₄S₂ (458.7): calcd C 68.09, H 5.71, N 12.22; found C 67.88, H 5.67, N 12.21.

2,10b-Bis-methylsulfanyl-1,1a,5,6,7,8,9,10,10b,10c-decahydro-*cis*-1a-*transoid*-10b,10c-3,3a-diaza-cycloocta[*b*]cyclopropa[*e*]indene-4,4-dicarbonitrile (3j). ¹H NMR (250 MHz, CDCl₃): δ =1.23 (ddd, 1H, *syn*-cyclopropyl-H), 1.45–2.22 (m, 12H, cyclopropyl-H, CH₂), 1.94 (s, 3H, SCH₃), 2.34–2.45 (m, 3H, CH₂), 2.43 (s, 3H, SCH₃) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =12.6 (cyclopropyl-CH), 12.9 (SCH₃), 13.3 (SCH₃), 14.7 (C-1), 16.8 (cyclopropyl-CH), 21.0 (CH₂), 22.3 (CH₂), 23.1 (CH₂), 27.7 (CH₂), 28.4 (CH₂), 33.4 (CH₂), 67.8, 73.0, 110.4, 112.49, 112.54, 136.1, 153.3 ppm. IR (KBr): $\tilde{\nu}$ =3100, 3060, 3020, 2990, 2980, 2920, 2850, 1660, 1580, 1440, 1370, 1260, 1175, 1120, 1060, 1040, 1020, 960, cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=273 (10 700) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=358.2 (3) [M⁺], 311.2 (100) [M⁺-SCH₃], 285.1 (15) [M⁺-CH₃SCN]. C₁₈H₂₂N₄S₂ (358.4): calcd C 60.32, H 6.19, N 15.63; found C 59.90, H 6.32, N 15.43.

2-Methylsulfanyl-1,1a,5,6,7,8,9,10,10c-nonahydro-3,3adiaza-cycloocta[b]cyclopropa[e]indene-4-carbonitrile (**3j**'). ¹H NMR (250 MHz, CDCl₃): δ =0.48 (ddd, 1H, syncyclopropyl-H), 1.41-1.69 (m, 9H, anti-cyclopropyl-H,CH₂), 2.02 (ddd, 1H, cyclopropyl-H), 2.48-2.80 (m, 5H, cyclopropyl-H, CH₂), 2.52 (s, 3H, SCH₃) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 11.5$ (C-1), 13.0 (cyclopropyl-CH), 13.1 (SCH₃), 15.6 (cyclopropyl-CH), 22.1 (CH₂), 23.6 (CH₂), 25.5 (CH₂), 25.6 (CH₂), 30.7 (CH₂), 30.8 (CH₂), 99.2, 113.3, 117.9, 121.5, 133.4, 157.2 ppm. IR (KBr): $\tilde{\nu}$ =3100, 3060, 3020, 2980, 2900, 2830, 2180, 1545, 1490, 1420, 1395, 1350, 1330, 1300, 1245, 1115, 1085, 1065, 1030, 950, 840, 790, 775, 630 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=249 (9700), 302 (19 000) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=285.1 (100) $[M^+]$, 257.0 (12), 242.0 (14), 238.1 (26), 154.9 (11). C₁₆H₁₉N₃S (285.3): calcd C 67.36, H 6.71, N 14.73; found C 67.12, H 6.91, N 14.54.

1,1-Dimethyl-2,10b-bis-methylsulfanyl-1,1a,5,6,7,8,9,10, 10b,10c-decahydro-cis-1a-transoid-10b,10c-3,3a-diazacvcloocta[b]cvclopropa[e]indene-4,4-dicarbonitrile (3k). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.04$ (s, 3H, syn-H₃CCCH₃), 1.27 (s, 3H, anti-H₃CCCH₃), 1.52-1.66 (m, 7H, CH₂), 1.72 (d, 1H, ${}^{3}J=8.0$ Hz, cyclopropyl-H), 1.89 (d, 1H, ${}^{3}J=8.0$ Hz, cyclopropyl-H), 2.00 (s, 3H, SCH₃), 2.02-2.15 (m, 2H, CH₂), 2.27-2.43 (m, 3H, CH₂), 2.44 (s, 3H, SCH₃) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =13.2 (SCH₃), 13.4 (SCH₃), 16.4 (syn-H₃CCCH₃), 21.1 (CH₂), 22.6 (CH₂), 23.2 (CH₂), 24.3 (cyclopropyl-CH), 27.1 (anti-H₃CCCH₃), 27.8 (CH₂), 28.0 (CH₂), 28.7 (cyclopropyl-CH), 29.0 (C-1), 33.5 (CH₂), 68.0, 72.1, 110.3, 112.5, 112.7, 134.3, 151.0 ppm. IR (KBr): *ν*=2960, 2930, 2860, 1660, 1570, 1440, 1375, 1260, 1175, 1120, 1060, 1040, 1020, 960, 905, 820, 800 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=282 (10 300) nm (l mol⁻¹ cm⁻¹). EI MS $(70 \text{ eV}): m/z \ (\%) = 386.3 \ (4) \ [M^+], 339.3 \ (100) \ [M^+ -$ SCH₃], 313.8 (28) [M⁺-CH₃SCN], 297.2 (12), 266.2 (11). C₂₀H₂₆N₄S₂ (386.6): calcd C 62.14, H 6.78, N 14.49; found C 62.15, H 6.81, N 14.42.

1,1-Dimethyl-2-methylsulfanyl-1,1a,5,6,7,8,9,10,10cnonahydro-3,3a-diaza-cycloocta[*b*]cyclopropa[*e*]indene-**4-carbonitrile** (**3k**^{*i*}). ¹H NMR (250 MHz, CDCl₃): δ =0.68 (s, 3H, *syn-H*₃CCCH₃), 1.32 (s, 3H, *anti-H*₃CCCH₃), 1.40– 1.66 (m, 7H, CH₂), 1.80 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 2.31 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 2.52 (s, 3H, SCH₃), 2.55–2.58 (m, 2H, CH₂), 2.65–2.70 (m, 3H, CH₂) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =13.0 (SCH₃), 15.1 (*syn*-H₃CCCH₃), 20.4 (C-1), 22.0 (CH₂), 23.7 (CH₂), 25.0 (cyclopropyl-CH), 25.5 (CH₂), 25.6 (CH₂), 30.9 (CH₂), 98.6, 113.4, 119.0, 119.8, 133.1, 155.7 ppm. IR (KBr): $\tilde{\nu}$ =2980, 2940, 2920, 2860, 2215, 1565, 1510, 1440, 1420, 1380, 1350, 1315, 1110, 860 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=251 (10 300), 303 (19 400) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=313.3 (100) [M⁺], 298.2 (30) [M⁺-CH₃], 285.1 (22), 270.2 (18), 266.2 (14) [M⁺⁻ SCH₃], 169.0 (12). C₁₈H₂₃N₃S (313.3): calcd C 68.98, H 7.40, N 13.41; found C 68.89, H 7.41, N 13.32.

2,6a-Bis-(4-methoxy-phenyl)-5-N,N-dimethylamino-1,1,6-trimethyl-1,1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (5a). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.32$ (s, 3H, syn-H₃CCCH₃), 1.36 (s, 3H, anti-H₃CCCH₃), 1.76 (s, 2H, cyclopropyl-H), 1.84 (s, 3H, CH₃), 2.82 (s, 6H, N(CH₃)₂), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 6.83–6.96 (m, 4H, aryl-H), 7.43–7.49 (m, 2H, aryl-H), 7.75–7.81 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ =11.7 (CH₃), 17.1 (syn-H₃CCCH₃), 20.5 (cvclopropyl-CH), 23.6 (C-1), 25.2 (cvclopropyl-CH), 27.3 (anti-H₃CCCH₃), 42.7 (N(CH₃)₂), 55.2 (OCH₃), 55.3 (OCH₃), 63.9, 67.4, 112.8, 113.5, 113.9, 114.5, 127.1, 127.5, 129.8, 134.7, 134.9, 137.1, 153.2, 158.7, 161.0 ppm. IR (KBr): $\tilde{\nu}$ =3080–2840, 1670, 1605, 1510, 1500, 1245, 1170, 1030, 830 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 231 (18 \ 100), 260 (18 \ 400) \text{ nm} (1 \ \text{mol}^{-1} \ \text{cm}^{-1}). \text{ EI}$ MS (70 eV): m/z (%)=481.0 (18) [M⁺], 268.0 (58), 253.0 (29), 187.0 (28), 133.1 (100), 103.1 (63), 90.1 (74), 64.2 (32), 63.2 (40). C₂₉H₃₁N₅O₂ (481.6): calcd C 72.33, H 6.49, N 14.54; found C 71.91, H 6.55, 14.40.

5-N,N-Dimethylamino-1,1,6-trimethyl-2,6a-di-p-tolyl-1,1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diazacvclopropa[e]indene-4,4-dicarbonitrile (5b). ¹H NMR (250 MHz, CDCl₃): δ =0.29 (s, 3H, syn-H₃CCCH₃), 1.35 (s, 3H, anti-H₃CCCH₃), 1.77 (s, 2H, cyclopropyl-H), 1.85 (s, 3H, CH₃), 2.32 (s, 3H, tolyl-CH₃), 2.37 (s, 3H, tolyl-CH₃), 2.82 (s, 6H, N(CH₃)₂), 7.09-7.26 (m, 4H, aryl-H), 7.38-7.49 (m, 2H, aryl-H), 7.66-7.80 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =11.82 (CH₃), 17.14 (syn-H₃CCCH₃), 20.49 (cyclopropyl-CH), 20.92 (tolyl-CH₃), 21.32 (tolyl-CH₃), 23.63 (C-1), 25.16 (cyclopropyl-CH), 27.23 (anti-H₃CCCH₃), 42.73 (N(CH₃)₂), 63.90, 67.65, 112.70, 114.41, 125.78, 125.92, 128.79, 129.18, 134.31, 134.79, 134.95, 136.77, 139.66, 142.05, 152.84 ppm. IR (KBr): $\tilde{\nu}$ =3020, 2980, 2950, 2920, 2870, 2800, 1505, 1445, 1125, 1115, 1100, 1075, 1050, 1010, 810 cm⁻¹. UV/ Vis (dioxane): $\lambda_{\text{max}} (\epsilon) = 225$ (21 300), 247 (13 900), 288 (11 800) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=449 (30) [M⁺], 434 (17) [M⁺-CH₃], 366 (27) [Ylid⁺], 359 (16), 358 (60) [M⁺-C₇H₇], 332 (38) [M⁺-C₇H₇CN], 252 (100), 249 (80), 238 (32), 237 (43), 185 (26) [Ylid⁺-C₇H₇CN-C(CN)₂], 184 (33), 171 (30), 143 (34), 128 (35), 119 (31), 117 (35), 116 (33), 115 (46), 105 (33), 91 (46), 83 (30) $[C_{3}H_{3}NMe_{2}^{+}]$, 42 (36). $C_{29}H_{31}N_{5}$ (449.6): calcd C 77.47, H 6.95, N 15.58; found C 77.31, H 6.89, N 15.53.

5-*N*,*N*-Dimethylamino-6-methyl-2,6a-diphenyl-1,1a,6a, 6b-tetrahydro-*cis*-1a-*transoid*-6a,6b-3,3a-diaza-cyclopropa[*e*]indene-4,4-dicarbonitrile (5c). ¹H NMR (250 MHz, CDCl₃): δ =0.38 (ddd, 1H, ²*J*=5.1 Hz, ³*J*=5.5 Hz, ³*J*=5.4 Hz, *syn*-cyclopropyl-H), 1.36 (ddd, 1H, ²*J*=5.1 Hz, ³*J*=9.7 Hz, ³*J*=6.4 Hz, *anti*-cyclopropyl-H), 1.91 (ddd, 1H, ³*J*=5.4 Hz, ³*J*=7.8 Hz, ³*J*=6.4 Hz, cyclopropyl-H), 1.96 (s, 3H, CH₃), 2.66 (ddd, 1H, ${}^{3}J$ =5.5 Hz, ${}^{3}J$ =7.8 Hz, ${}^{3}J$ =9.7 Hz, cyclopropyl-H), 2.87 (s, 6H, N(CH₃)₂), 7.21–7.49 (m, 8H, aryl-H), 7.91–7.97 (m, 2H, aryl-H) ppm. 13 C NMR (63 MHz, CDCl₃): δ =10.3 (cyclopropyl-CH), 12.1 (CH₃), 12.5 (C-1), 15.3 (cyclopropyl-CH), 42.8 (N(CH₃)₂), 61.9, 68.5, 112.9, 113.6, 125.8, 127.3, 127.6, 128.3, 128.4, 129.8, 132.3, 136.4, 136.8, 142.2, 155.5 ppm. IR (KBr): $\tilde{\nu}$ =3110–3010, 2970–2830, 1660, 1485, 1445, 1390, 1360, 1350, 1140, 1080, 1050, 1030, 915, 780, 765, 715, 700 cm⁻¹. UV/Vis (dioxane): $\lambda_{max} (\epsilon)$ =247 (12 600), 274 (8770) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=393.3 (36) [M⁺], 316.2 (100) [M⁺-C₆H₅], 232.0 (13), 223.0 (13), 185.0 (13). C₂₅H₂₃N₅ (393.3): calcd C 76.35, H 5.89, N 17.81; found C 76.27, H 5.95, N 17.87.

5-N,N-Dimethylamino-1,1,6-trimethyl-2,6a-diphenyl-1, 1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diazacyclopropa[e]indene-4,4-dicarbonitrile (5d). ¹H NMR (400 MHz, CDCl₃): δ =0.27 (s, 3H, syn-H₃CCCH₃), 1.37 (s, 3H, anti-H₃CCCH₃), 1.79 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.81 (d, 1H, ³J=8.3 Hz, cyclopropyl-H), 1.88 (s, 3H, CH₃), 2.83 (s, 6H, N(CH₃)₂), 7.22-7.26 (m, 1H, aryl-H), 7.32-7.43 (m, 5H, aryl-H), 7.55-7.58 (m, 2H, aryl-H), 7.82-7.85 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ =11.8 (CH₃), 17.1 (*syn*-H₃CCCH₃), 20.5 (cyclopropyl-CH), 23.7 (C-1), 24.9 (cyclopropyl-CH), 27.1 (anti-H₃CCCH₃), 42.7 (N(CH₃)₂), 63.8, 67.7, 112.5, 114.2, 125.7, 125.9, 127.1, 128.1, 128.5, 129.6, 134.3, 134.9, 136.8, 144.9, 152.7 ppm. IR (KBr): $\tilde{\nu}$ = 3080–2800, 1670, 1445, 775, 770, 710, 700 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 220$ (19 100), 245 (13 000), 276 (8600) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=421 (27) [M⁺], 344.2 (100), 318.4 (42), 241.1 (33), 238.2 (83), 224.1 (36), 223.1 (57), 129.3 (41), 128.3 (37), 115.2 (46), 102.2 (32), 91.3 (35), 77.2 (56), 42.1 (31). C₂₇H₂₇N₅ (421.5): calcd C 76.93, H 6.46, N 16.61; found C 77.09, H 6.47, N 16.62.

2,6a-Bis-(4-chloro-phenyl)-5-N,N-dimethylamino-1,1,6trimethyl-1,1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-**3.3a-diaza-cyclopropa**[*e*]indene-4,4-dicarbonitrile (5e). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.27$ (s, 3H, syn-H₃CCCH₃), 1.36 (s, 3H, anti-H₃CCCH₃), 1.76 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.81 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.86 (s, 3H, CH₃), 2.83 (s, 6H, N(CH₃)₂), 7.28-7.44 (m, 4H, aryl-H), 7.44-7.55 (m, 2H, aryl-H), 7.69-7.83 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta =$ 11.74 (CH₃), 17.21 (syn-H₃CCCH₃), 20.31 (cyclopropyl-CH), 23.70 (C-1), 24.83 (cyclopropyl-CH), 27.09 (anti-H₃CCCH₃), 42.65 (N(CH₃)₂), 63.68, 67.46, 112.36, 114.09, 127.08, 127.21, 128.42, 128.80, 132.90, 133.20, 135.19, 135.33, 135.81, 143.52, 151.76 ppm. IR (KBr): $\tilde{\nu}$ =2980, 2950, 2910, 2860, 2800, 1480, 1080, 1000, $\nu = 2900, 2900, 2900, 2000, 2000, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000,$ $[M^+-CN]$, 406 (5) $[Ylid^+]$, 378 (18) $[M^+-C_6H_4Cl]$, 352 (7) $[M^+ - C_6 H_4 Cl - CN]$, 272 (16), 269 (13), 257 (17), 136 (10), 135 (11), 83 (100), 82 (20) $[Me_2N-C_3H_3]$, 35 (14). C₂₇H₂₅Cl₂N₅ (490.5): calcd C 66.12, H 5.14, N 14.28; found C 66.09, H 5.22, N 14.26.

2,6a-Bis-(4-trifluoromethyl-phenyl)-5-*N*,*N*-dimethylamino-1,1,6-trimethyl-1,1a,6a,6b-tetrahydro-*cis*-1a*transoid*-6a,6b-3,3a-diaza-cyclopropa[*e*]indene-4,4dicarbonitrile (5f). ¹H NMR (250 MHz, CDCl₃): δ =0.22 (s, 3H, *syn*-*H*₃CCCH₃), 1.39 (s, 3H, *anti*-*H*₃CCCH₃), 1.83 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 1.88 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 1.89 (s, 3H, CH₃), 2.84 (s, 6H, N(CH₃)₂), 7.61–7.71 (m, 6H, aryl-H), 7.93–7.96 (m, 2H, aryl-H), ppm. IR (KBr): $\tilde{\nu}$ =3030–2800, 1660, 1410, 1320, 1160, 1120, 1060, 1005, 845 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=222 (24 500), 240 (18 200), 286 (10 900) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m*/*z* (%)=557.9 (5) [M⁺], 556.9 (16), 411.9 (100) [M⁺-C₆H₄CF₃], 305.8 (60), 290.8 (26), 241 (28). C₂₉H₂₅N₅F₆ (557.5): calcd C 62.47, H 4.52, N 12.56; found C 62.55, H 4.61, N 12.58.

5-N,N-Dimethylamino-1,1,6-trimethyl-2,6a-bis-(1-methyl-1H-pyrrol-2-yl)-1,1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (5g). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.54$ (s, 3H, syn-H₃CCCH₃), 1.35 (s, 3H, anti-H₃CCCH₃), 1.57 (d, 1H, ${}^{3}J=8.4$ Hz, H-1a), 1.75 (d, 1H, ${}^{3}J=8.4$ Hz, H-6b), 1.75 (s, 3H, CH₃), 2.88 (s, 6H, N(CH₃)₂), 3.78 (s, 3H, pyrryl-CH₃), 4.00 (s, 3H, pyrryl-CH₃), 5.98 (dd, 1H, aryl-H), 6.09 (dd, 1H, aryl-H), 6.12 (dd, 1H, aryl-H), 6.46-6.49 (m, 2H, aryl-H), 6.71 (dd, 1H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 11.3$ (CH₃), 16.8 (syn-H₃CCCH₃), 21.0 (C-6b), 22.3 (C-1), 25.3 (C-1a), 27.4 (anti-H₃CCCH₃), 36.5 (pyrryl-CH₃), 38.2 (pyrryl-CH₃), 42.8 (N(CH₃)₂), 65.3, 62.5, 106.6, 107.6, 110.6, 113.6, 113.9, 115.0, 124.2, 128.3, 129.1, 132.5, 132.8, 134.0, 157.5 ppm. IR (KBr): $\tilde{\nu}$ =3130, 3000-2820, 1675, 1575, 1540, 1480, 1465, 1440, 1380, 1330, 1295, 1120, 1100, 1090, 1060, 1045, 745, 730 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}} (\epsilon) = 276$ (13 500), 306 (14 700) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z(%)=427.5 (100) [M⁺], 412.4 (21) [M⁺-CH₃], 359.4 (11), 266.2 (12), 226.1 (15), 160.0 (16), 122.0 (14), 104.9 (12), 94.0 (11). C₂₅H₂₉N₇ (427.4): calcd C 70.26, H 6.84, N 22.94; found C 70.35, H 6.83, N 22.88.

2,6a-Di-furan-2-yl-5-N,N-dimethylamino-1,1,6-trimethyl-1,1a,6a,6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (5h). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.82$ (s, 3H, syn-H₃CCCH₃), 1.30 (s, 3H, anti-H₃CCCH₃), 1.65 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.89 (s, 3H, CH₃), 1.92 (d, 1H, ${}^{3}J=8.4$ Hz, cyclopropyl-H), 2.89 (s, 6H, N(CH₃)₂), 6.33-6.37 (m, 2H, aryl-H), 6.46 (dd, 1H, aryl-H), 6.79 (dd, 1H, aryl-H), 7.41 (dd, 1H, aryl-H), 7.49 (dd, 1H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =11.8 (CH₃), 16.2 (syn-H₃CCCH₃), 18.8 (cyclopropyl-CH), 24.3 (cyclopropyl-CH), 25.4 (C-1), 27.5 (anti-H₃CCCH₃), 42.6 (N(CH₃)₂), 64.8, 65.0, 108.3, 109.2, 110.4, 111.6, 111.8, 113.8, 130.1, 138.1, 142.2, 142.6, 143.5, 151.7, 154.6 ppm. IR (KBr): $\tilde{\nu}$ =3160, 3140, 3085, 2990–2830, 1605, 1490, 1450, 1160, 1090, 1020, 1000, 770, 745 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 292 \ (14 \ 700) \ \text{nm} \ (1 \ \text{mol}^{-1} \ \text{cm}^{-1}). \ \text{EI MS} \ (70 \ \text{eV}):$ m/z (%)=401.3 (100) [M⁺], 386.2 (24) [M⁺-CH₃], 358.2 (10), 318.1 (18), 308.1 (20), 252.0 (12), 240.0 (30), 228.0 (72), 214.0 (41), 187.9 (16), 160.9 (37), 146.9 (19), 131.9 (13). C₂₃H₂₃N₅O₂ (401.5): calcd C 68.84, H 5.78, N 17.45; found C 68.95, H 5.97, N 17.39.

5-*N*,*N*-Dimethylamino-1,1,6-trimethyl-2,6a-di-thiophen-2-yl-1,1a,6a,6b-tetrahydro-*cis*-1a-*transoid*-6a,6b-3,3a-

diaza-cyclopropa[e]indene-4,4-dicarbonitrile (5i). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.78$ (s, 3H, syn-H₃CCCH₃), 1.31 (s, 3H, anti-H₃CCCH₃), 1.76 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.93 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 1.95 (s, 3H, CH₃), 2.87 (s, 6H, N(CH₃)₂), 6.93–6.96 (m, 1H, aryl-H), 7.01-7.05 (m, 1H, aryl-H), 7.21-7.27 (m, 1H, aryl-H), 7.29-7.36 (m, 3H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ=11.9 (CH₃), 17.0 (syn-H₃CCCH₃), 20.6 (cyclopropyl-CH), 25.3 (C-1), 27.5 (2C, cyclopropyl-CH, anti-H₃CCCH₃), 42.6 (N(CH₃)₂), 64.1, 67.0, 112.1, 113.4, 124.7, 125.3, 126.2, 126.4, 127.1, 127.9, 131.8, 136.9, 142.6, 148.1, 148.7 ppm. IR (KBr): $\tilde{\nu}$ =3120-2810, 1660, 1440, 1235, 1050, 850, 720 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=248 (15 300), 308 (10 300) \text{ nm} (1 \text{ mol}^{-1} \text{ cm}^{-1}). \text{ EI MS}$ $(70 \text{ eV}): m/z \ (\%) = 433.9 \ (8) \ [M^+], \ 432.9 \ (29), \ 243.9 \ (100),$ 240.9 (29), 229.9 (29), 163.0 (21), 147.0 (22), 129.0 (22), 42.3 (24). C₂₃H₂₃N₅S₂ (433.6): calcd C 63.71, H 5.35, N 16.15; found C 63.72, H 5.50, N 16.10.

5-N.N-Dimethylamino-1,1,6-trimethyl-2-methylsulfanyl-1a,6b-dihydro-1H-3,3a-diaza-cyclopropa[e]indene-4carbonitrile (5k'). ¹H NMR (250 MHz, CDCl₃): δ =0.71 (s, 3H, syn-H₃CCCH₃), 1.33 (s, 3H, anti-H₃CCCH₃), 1.80 (d, 1H, ${}^{3}J=8.3$ Hz, H-1a), 2.02 (s, 3H, CH₃), 2.27 (d, 1H, ${}^{3}J=8.3$ Hz, H-6b), 2.51 (s, 3H, SCH₃), 2.90 (s, 6H, N(CH₃)₂) ppm. 13 C NMR (63 MHz, CDCl₃): $\delta=9.3$ (CH₃), 13.1 (SCH₃), 15.2 (syn-H₃CCCH₃), 20.3 (C-1), 25.5 (C-6b), 26.0 (anti-H₃CCCH₃), 27.9 (C-1a), 43.8 (N(CH₃)₂), 91.0, 107.4, 115.2, 121.4, 145.8, 153.9 ppm. IR (KBr): $\tilde{\nu}$ =3020, 2970–2810, 2220, 1565, 1525, 1455, 1445, 1430, 1415, 1345, 1315, 1100, 1060, 1040, 980 cm⁻ UV/Vis (dioxane): λ_{max} (ϵ)=318 (14 000) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=288.2 (100) [M⁺], 273.2 (9) $[M^+-CH_3]$, 241.1 (22) $[M^+-SCH_3]$, 227.1 (16), 200.0 (13). C₁₅H₂₀N₄S (288.4): calcd C 62.47, H 6.99, N 19.43; found C 62.30, H 6.78, N 19.45.

4,4-Dicyano-2,6a-bis-(4-methoxy-phenyl)-1,1-dimethyl-1a,4,6a,6b-tetrahydro-1H-cis-1a-transoid-6a,6b-3,3adiaza-cyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7a). ¹H NMR (250 MHz, CDCl₃): δ =0.40 (s, 3H, syn-H₃CCCH₃), 1.32 (s, 3H, anti-H₃CCCH₃), 1.91 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 2.33 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 3.80 (s, 3H, OCH₃), 3.84 (s, 6H, OCH₃), 3.89 (s, 3H, OCH₃), 6.86-6.97 (m, 4H, aryl-H), 7.42-7.48 (m, 2H, aryl-H), 7.74–7.81 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 16.8$ (syn-H₃CCCH₃), 20.5 (cyclopropyl-CH), 24.0 (C-1), 25.2 (cyclopropyl-CH), 27.0 (anti-H₃CCCH₃), 53.3 (OCH₃), 53.3 (OCH₃), 55.3 (OCH₃), 55.4 (OCH₃), 65.1, 69.9, 110.2, 112.2, 114.0, 114.1, 122.9, 127.2, 127.6, 129.2, 133.1, 153.0, 154.1, 159.1, 159.7, 161.3, 163.1 ppm. IR (KBr): v=3080-2830, 1730, 1720, 1650, 1305, 1290, 1240, 1605, 1510, 1440, 1380, 1035, 840 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ) =225 (25 500), 282 (20 800) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z (%)=540.2 (74) [M⁺], 201.1 (82), 200.1 (80), 187.1 (56), 186.1 (55), 159.0 (35), 149.1 (100), 134.0 (57), 132.9 (37), 131.9 (34), 120.9 (33), 77.0 (38), 59.0 (36). C30H28N4O6 (540.6): calcd C 66.66, H 5.22, N 10.36; found C 66.61, H 5.43, N 10.62.

4,4-Dicyano-1,1-dimethyl-2,6a-di-*p*-tolyl-1a,4,6a,6b-tetrahydro-1*H-cis*-1a-*transoid*-6a,6b-3,3a-diaza-cyclo-

propa[e]indene-5,6-dicarboxylic acid dimethyl ester (7b). ¹H NMR (250 MHz, CDCl₃): δ =0.38 (s, 3H, syn-H₃CCCH₃), 1.31 (s, 3H, anti-H₃CCCH₃), 1.77 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 2.34–2.38 (m, 7H, tolyl-CH₃, cyclopropyl-H), 3.85 (s, 3H, CO₂CH₃), 3.89 (s, 3H, CO₂CH₃), 7.10-7.30 (m, 4H, aryl-H), 7.35-7.49 (m, 2H, aryl-H), 7.65-7.78 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =16.78 (*syn*-H₃CCCH₃), 20.48 (cyclopropyl-CH), 21.02 (tolyl-CH₃), 21.34 (tolyl-CH₃), 24.05 (C-1), 25.12 (cyclopropyl-CH), 27.00 (anti-H₃CCCH₃), 53.25 (CO₂CH₃), 53.30 (CO₂CH₃), 65.17, 70.15, 110.06, 112.12, 123.23, 125.76, 126.03, 129.30, 133.77, 138.19, 138.42, 140.22, 152.57, 153.97, 159.11, 163.11 ppm. IR (KBr): $\tilde{\nu}$ =3040, 3020, 3000, 2950, 2910, 1730, 1720, 1660, 1425, 1300, 1260, 1110 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=240 (14 200), 279 (14 300) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=508 (52) [M⁺], 493 (25) $[M^+-CH_3]$, 417 (29) $[M^+-C_7H_7]$, 185 (100) $[Ylid^+-$ C₇H₇CN-C(CN)₂], 184 (95), 171 (36), 170 (31), 156 (31), 143 (61), 141 (33), 128 (44), 118 (44), 116 (30), 115 (52), 105 (30), 91 (60), 67 (32), 65 (36), 59 (37). C₃₀H₂₈N₄O₄ (508.6): calcd C 70.85, H 5.55, N 11.02; found C 70.85, H 5.46, N 11.04.

4,4-Dicyano-1,1-dimethyl-2,6a-diphenyl-1a,4,6a,6btetrahydro-1H-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7d). ¹H NMR (250 MHz, CDCl₃): δ =0.37 (s, 3H, syn-H₃CCCH₃), 1.33 (s, 3H, anti-H₃CCCH₃), 1.94 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 2.42 (d, 1H, ³*J*=8.3 Hz, cyclopropyl-H), 3.84 (s, 3H, CO₂CH₃), 3.89 (s, 3H, CO₂CH₃), 7.28-7.49 (m, 6H, aryl-H), 7.52-7.57 (m, 2H, aryl-H), 7.79–7.87 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 16.8$ (syn-H₃CCCH₃), 20.6 (cyclopropyl-CH), 24.2 (C-1), 25.1 (cyclopropyl-CH), 27.0 (anti-H₃CCCH₃), 53.3 (CO₂CH₃), 53.4 (CO₂CH₃), 65.1, 70.3, 110.0, 112.1, 123.4, 125.8, 126.1, 128.6, 128.7, 130.1, 136.4, 141.1, 152.7, 153.7, 159.0, 163.0 ppm. IR (KBr): v=3080-2890, 1740, 1725, 1660, 1440, 1340–1250, 740, 700, 690 cm⁻ UV/Vis (dioxane): λ_{max} (ϵ)=215 (26 100), 242 (14 600), 274 (10 600) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z(%)=481.2 (33), 480.1 (100) [M⁺], 465.1 (52), 403.1 (47), 171.3 (97), 170.1 (71), 128.9 (43). C₂₈H₂₄N₄O₄ (480.5): calcd C 69.99, H 5.03, N 11.66; found C 70.05, H 5.07, N 11.67.

2,6a-Bis-(4-chloro-phenyl)-4,4-dicyano-1,1-dimethyl-1a, 4.6a,6b-tetrahvdro-1H-cis-1a-transoid-6a,6b-3,3a-diazacyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7e). ¹H NMR (250 MHz, CDCl₃): δ =0.37 (s, 3H, syn-H₃CCCH₃), 1.32 (s, 3H, anti-H₃CCCH₃), 1.92 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 2.38 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 3.87 (s, 3H, CO₂CH₃), 3.91 (s, 3H, CO₂CH₃), 7.30-7.56 (m, 6H, aryl-H), 7.69-7.83 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =16.84 (syn-H₃CCCH₃), 20.29 (cyclopropyl-CH), 24.23 (C-1), 24.94 (cyclopropyl-CH), 26.90 (anti-H₃CCCH₃), 53.50 (2C, CO₂CH₃), 65.02, 69.79, 109.71, 111.83, 123.94, 127.20, 127.33, 128.93, 128.95, 134.64, 134.80, 136.36, 139.58, 151.53, 152.96, 158.80, 162.79 ppm. IR (KBr): $\tilde{\nu}$ =3040, 2980, 2950, 2920, 2870, 1720, 1655, 1485, 1430, 1330, 1285, 1115, 1090, 1070, 1010, 1000 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=222 (24 800), 250 (15 500), 277 (13 300) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=550 (31), 548 (43) [M⁺], 533 (28) [M⁺-CH₃], 437 (32) [M⁺-C₆H₄Cl], 207 (34), 206 (38), 205 (100) [Ylid⁺-ClC₆H₄CN-C(CN)₂], 203 (73), 191 (34), 35 (38). C₂₈H₂₂Cl₂N₄O₄ (549.4): calcd C 61.21, H 4.04, N 10.20; found C 60.46, H 4.15, N 10.04.

4,4-Dicyano-2,6a-bis-(4-trifluoromethyl-phenyl)-1,1dimethyl-1a,4,6a,6b-tetrahydro-1H-cis-1a-transoid-6a, 6b-3,3a-diaza-cyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7f). ¹H NMR (250 MHz, CDCl₃): δ =0.34 (s, 3H, syn-H₃CCCH₃), 1.34 (s, 3H, anti-H₃CCCH₃), 1.98 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 2.47 (d, 1H, ${}^{3}J=8.3$ Hz, cyclopropyl-H), 3.89 (s, 3H, CO₂CH₃), 3.92 (s, 3H, CO₂CH₃), 7.64-7.72 (m, 6H, aryl-H), 7.92-7.95 (m, 2H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =2960–2880, 1735, 1725, 1660, 1435, 1320, 1280, 1175, 1125, 1065, 1010, 850 cm⁻¹. UV/ Vis (dioxane): λ_{max} (ϵ)=217 (24 700), 242 (16 900), 276 (9350) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=615.9 (26) [M⁺], 600.8 (50) [M⁺-CH₃], 470.8 (48) $[M^+ - C_6H_4CF_3]$, 239.0 (100), 238.0 (62), 176.9 (65), 158.9 (44), 67.1 (65), 59.2 (74), 41.2 (34). C₃₀H₂₂F₆N₄O₄ (616.5): calcd C 58.45, H 3.60, N 9.09; found C 58.19, H 3.79, N 8.95.

4,4-Dicyano-2,6a-di-furan-2-yl-1,1-dimethyl-1,1a,6a,6btetrahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7h). ¹H NMR (250 MHz, CDCl₃): δ =0.91 (s, 3H, syn-H₃CCCH₃), 1.32 (s, 3H, anti-H₃CCCH₃), 1.92 (d, 1H, ³J=8.2 Hz, cyclopropyl-H), 2.11 (d, 1H, ³*J*=8.2 Hz, cyclopropyl-H), 3.88 (s, 3H, CO₂CH₃), 3.92 (s, 3H, CO₂CH₃), 6.40 (dd, 1H, aryl-H), 6.49 (dd, 1H, aryl-H), 6.55 (dd, 1H, aryl-H), 6.85 (dd, 1H, aryl-H), 7.48 (dd, 1H, aryl-H), 7.51 (dd, 1H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =16.4 (*syn*-H₃CCCH₃), 18.9 (cyclopropyl-CH), 24.1 (cyclopropyl-CH), 25.5 (C-1), 27.3 (anti-H₃CCCH₃), 53.40 (CO₂CH₃), 53.44 (CO₂CH₃), 66.1, 67.1, 109.3, 110.1, 110.6, 110.9, 111.4, 111.8, 127.1, 143.3, 143.6, 144.1, 150.3, 150.9, 151.5, 159.1, 162.3 ppm. IR (KBr): $\tilde{\nu}$ =3170, 3130, 3000, 2970, 2940, 1730, 1660, 1440, 1340, 1295, 1130, 1080, 1010, 750 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 288$ (18 800) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=460.3 (52) [M⁺], 445.3 (40) $[M^+-CH_3]$, 401.2 (10), 351.1 (15), 160.9 (100), 46.9 (13), 131.9 (11), 108.9 (28), 93.9 (13), 55.1 (13). $C_{24}H_{20}N_4O_6$ (460.3): calcd C 62.63, H 4.38, N 12.17; found C 62.72, H 4.67, N 12.04.

4,4-Dicvano-1,1-dimethyl-2,6a-di-thiophen-2-yl-1,1a,6a, 6b-tetrahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-5,6-dicarboxylic acid dimethyl ester (7i). ¹H NMR (250 MHz, CDCl₃): δ =0.89 (s, 3H, syn-H₃CCCH₃), 1.31 (s, 3H, anti-H₃CCCH₃), 2.10 (d, 1H, ${}^{3}J=8.2$ Hz, cyclopropyl-H), 2.17 (d, 1H, ${}^{3}J=8.2$ Hz, cyclopropyl-H), 3.90 (s, 3H, CO₂CH₃), 3.99 (s, 3H, CO₂CH₃), 6.96-7.00 (m, 1H, aryl-H), 7.04-7.08 (m, 1H, aryl-H), 7.21-7.23 (m, 1H, aryl-H), 7.37-7.41 (m, 3H, aryl-H) ¹³C NMR (63 MHz, CDCl₃): $\delta = 17.0$ (synppm. H₃CCCH₃), 20.8 (cyclopropyl-CH), 25.6 (C-1), 27.3 (anti-H₃CCCH₃), 27.6 (cyclopropyl-CH), 53.4 (CO₂CH₃), 53.5 (CO₂CH₃), 65.4, 69.3, 109.5, 111.1, 125.9, 126.6, 126.8, 127.1, 127.3, 127.3, 128.7, 141.7, 144.3, 148.7, 152.8, 159.2, 162.5 ppm. IR (KBr): $\tilde{\nu}$ =3130, 2970, 1740, 1720, 1660, 1435, 1300, 985, 850, 735, 715 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=230 (13 800), 250 (13 300), 300 (13 000) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=492.1 (74) [M⁺], 477.1 (32), 367.0 (33), 203.1 (36), 202.1 (35), 177.1 (100), 176.0 (89), 163.1 (38), 162.1 (36), 147.0 (33), 135.2 (56), 129.2 (84), 125.0 (66), 11.2 (30), 110.1 (54), 109.1 (33), 108.0 (36), 97.1 (51), 91.1 (34), 79.1 (36), 77.0 (35), 67.1 (35), 59.1 (65); 45.1 (46), 41.1 (37), 39.1 (42). C₂₄H₂₀N₄O₄S₂ (492.6): calcd C 58.52, H 4.09, N 11.37; found C 58.42, H 4.08, N 11.35.

5,5-Diethoxy-1,1-dimethyl-2,6a-di-p-tolyl-1,1a,5,6,6a,6bhexahydro-cis-1a-transoid-6a,6b,3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (9a). ¹H NMR (250 MHz, CDCl₃): δ =0.18 (s, 3H, syn-H₃CCCH₃), 0.71 (t, 3H, $^{3}J=7.0$ Hz, exo-CH₃CH₂O), 1.19 (s, 3H, anti-H₃CCCH₃), 1.25 (t, 3H, ${}^{3}J=7.0$ Hz, endo-CH₃CH₂O), 1.69 (d, 1H, ${}^{3}J=8.2$ Hz, H-6b), 1.74 (d, 1H, ${}^{3}J=8.2$ Hz, H-1a), 2.31 (s, 3H, tolyl-CH₃), 2.36 (s, 3H, tolyl-CH₃), 2.47 (dq, 1H, $^{2}J=8.4$ Hz, $^{3}J=7.1$ Hz, exo-CH₃CH₂O), 2.64 (d, 1H, $^{2}J=13.6$ Hz, H^{β}-6), 2.99 (d, 1H, $^{2}J=13.6$ Hz, H^{α}-6), 3.20 $(dq, 1H, {}^{2}J=8.4 \text{ Hz}, {}^{3}J=7.1 \text{ Hz}, exo-CH_{3}CH_{2}O), 3.68-$ 3.88 (m, 2H, endo-CH₃CH₂O), 7.07-7.10 (m, 2H, aryl-H), 7.18-7.22 (m, 2H, aryl-H), 7.33-7.37 (m, 2H, aryl-H), 7.69-7.72 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 13.79$ (*exo-CH*₃CH₂O), 14.86 (endo-CH₃CH₂O), 16.40 (syn-H₃CCCH₃), 20.53 (C-1a), 20.90 (tolyl-CH₃), 21.32 (tolyl-CH₃), 23.66 (C-1), 27.13 (anti-H₃CCCH₃), 28.75 (C-6b), 48.91 (C-6), 58.67 (exo-CH₃CH₂O), 59.60 (endo-CH₃CH₂O), 59.78, 68.92, 107.23 (C-5), 112.02, 113.20, 125.84, 126.28, 128.12, 129.15, 134.58, 136.06, 139.39, 143.44, 150.72 ppm. IR (KBr): $\tilde{\nu}$ =3060, 3030, 2990, 2940, 2900, 2880, 1510, 1450, 1440, 1305, 1210, 1180, 1120, 1080, 1060, 1045, 820 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=222 (18 000), 294 $(10 400) \text{ nm} (1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=482 (7) [M⁺], 437 (2) [M⁺-OEt], 367 (46), 366 (100) [Ylid⁺], 365 (13), 351 (11) [Ylid⁺-CH₃], 250 (14), 249 (71) [Ylid⁺-C₇H₇CN], 248 (15), 234 (16) [Ylid⁺-C₇H₇CN–CH₃], 209 (11), 185 (30) [Ylid⁺-C₇H₇CN-C(CN)₂], 184 (21), 181 (12), 171 (14), 170 (15), 157 (14), 155 (11), 143 (13), 142 (12), 118 (13), 117 (17), 116 (11) $[C_2H_2(OEt_2)^+]$, 91 (11), 43 (11). C₃₀H₃₄N₄O₂ (482.6): calcd C 74.66, H 7.10, N 11.61; found C 74.75, H 7.13, N 11.62.

r-5-Ethoxy-5-N,N-dimethylamino-1,1-dimethyl-2,c-6adi-p-tolyl-1,1a,5,6,6a,6b-hexahydro-cis-1a-transoid-6a, 6b-3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (9b). ¹H NMR (400 MHz, CDCl₃): δ =0.10 (s, 3H, syn- H_3 CCCH₃), 0.47 (t, 3H, ³J=7.0 Hz, OCH₂CH₃), 0.91 (s, 3H, anti- H_3 CCCH₃), 1.16 (d, 1H, ³J=8.2 Hz, H-6b), 1.36 (d, 1H, ${}^{3}J=8.2$ Hz, H-1a), 2.09 (dq, 1H, OCH₂CH₃), 2.10 (s, 3H, tolyl-CH₃), 2.11 (s, 3H, tolyl-CH₃), 2.46 (d, 1H, $^{2}J=13.2$ Hz, H^{β}-6), 2.48 (s, 6H, N(CH₃)₂), 2.54 (d, 1H, $^{2}J=13.2$ Hz, H^{α}-6), 2.82 (dq, $^{2}J=8.1$ Hz, $^{3}J=7.0$ Hz, OCH₂CH₃), 6.77-6.93 (2H, aryl-H), 6.93-7.06 (m, 2H, aryl-H), 7.14-7.82 (2H, aryl-H), 7.82-7.91 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ =13.96 (OCH₂CH₃), 16.47 (syn-H₃CCCH₃), 20.52 (C-1a), 20.81 (tolyl-CH₃), 21.19 (tolyl-CH₃), 22.89 (C-1), 26.88 (anti-H₃CCCH₃), 28.72 (C-6b), 47.28 (C-6), 58.25 (OCH₂CH₃), 60.33, 70.88, 99.89 (C-5), 113.11, 114.40, 126.18, 128.06, 129.37, 135.20, 135.44, 139.13, 144.82, 149.77 ppm. IR (KBr): $\tilde{\nu}$ =3040, 3010, 2970, 2910, 2880, 2800, 1500, 1440, 1120, 1090, 1065, 810 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=222 (18 900), 297 (10 800) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=482 (0.2) [M⁺], 366 (5) [Ylid⁺], 351 (1) [Ylid⁺-CH₃], 249 (6) [Ylid⁺-C₇H₇CN], 234 (2) [Ylid⁺-C₇H₇CN-CH₃], 117 (23), 116 (17), 115 (48) [C₂H₂OEtNMe₂⁺], 87 (34), 72 (12), 70 (17), 56 (52), 55 (15), 45 (39), 44 (100), 43 (36), 42 (23). C₃₀H₃₅N₅O

5-N,N-Dimethylamino-1,1-dimethyl-r-5-methylsulfanyl-2,c-6a-di-p-tolyl-1,1a,5,6,6a,6b-hexahydro-cis-1a-transoid-6a,6b-3,3a-diaza-cyclopropa[e]indene-4,4-dicarbonitrile (9c). ¹H NMR (400 MHz, CCl_4/d_6 -acetone): $\delta = 0.01$ (s, 3H, syn-H₃CCCH₃), 1.24 (s, 3H, anti-H₃CCCH₃), 1.33 (s, 3H, SCH₃), 1.79 (s, 2H, H-1a, H-6b), 2.31 (s, 3H, tolyl-CH₃), 2.38 (s, 3H, tolyl-CH₃), 2.39 (s, 6H, N(CH₃)₂), 2.99 (d, 1H, ${}^{2}J=13.6$ Hz, H^{β}-6), 3.32 (d, 1H, ${}^{2}J=13.6$ Hz, H^{α}-6), 7.00-7.02 (m, 2H, aryl-H), 7.15-7.17 (m, 2H, aryl-H), 7.20-7.66 (2H, aryl-H), 7.66-7.72 (m, 2H, aryl-H) ppm. IR (KBr): v=2990, 2960, 2870, 2840, 2800, 1505, 1450, 1430, 1260, 1170, 1110, 1100, 1035, 1010, 810 cm^{-1} . UV/ Vis (dioxane): (λ_{max} (ϵ)=248 (13 000), 305 (7780) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. FD MS (solvent CCl₄): m/z (%)=966 (6) $[M_2^+]$, 849 (1) $[M_2^+ - C_2H_2SMeNMe_2]$, 732 (1) $[M_2^+ - 2xC_2H_2SMeNMe_2]$, 483 (100) $[M^+]$, 366 (46) $[M^+ - 2xC_2H_2SMeNMe_2]$ C₂H₂SMeNMe₂]. C₂₉H₃₃N₅S (483.7): calcd C 72.01, H 6.88, N 14.48; found C 71.75, H 7.06, N 14.51.

(481.7): calcd C 74.81, H 7.32, N 14.54; found C 74.77,

H 7.40, N 14.56.

1,1-Dimethyl-4a-pyrrolidin-1-yl-2,8b-di-p-tolyl-1,1a,4a, 5,6,7,8,8a,8b,8c-decahydro-cis-1a-cis-4a-transoid-8a,8btransoid-8b,8c-3,3a-diaza-cyclopropa[c]fluorene-4,4dicarbonitrile (9d). ¹H NMR (400 MHz, CDCl₃): δ =0.01 (s, 3H, syn-H₃CCCH₃), 0.06–0.24 (m, 1H, cyclohexyl-H), 1.00-1.10 (m, 1H, cyclohexyl-H), 1.17-1.45 (m, 2H, cyclohexyl-/pyrrolidyl-H), 1.27 (s, 3H, anti-H₃CCCH₃), 1.60-2.08 (m, 6H, cyclohexyl-/pyrrolidyl-H), 1.77 (s, 2H, cyclopropyl-H), 2.08–2.27 (m, 2H, cyclohexyl-/pyrrolidyl-H), 2.32 (s, 3H, tolyl-CH₃), 2.36 (s, 3H, tolyl-CH₃), 2.91–4.00 (m, 5H, cyclohexyl-/pyrrolidyl-H), 7.00–7.15 (m, 2H, aryl-H), 7.18-7.20 (m, 2H, aryl-H), 7.27-7.40 (m, 1H, aryl-H), 7.46-7.60 (m, 1H, aryl-H), 7.70-7.79 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ =16.20 (*syn*-H₃CCCH₃), 19.06 (CH₂), 19.78 (CH₂), 20.69 (cyclopropyl-CH), 20.94 (tolyl-CH₃), 21.34 (tolyl-CH₃), 22.48 (C-1), 22.57 (CH₂), 25.44 (2C, CH₂), 27.30 (anti-H₃CCCH₃), 28.96 (CH₂), 31.37 (cyclopropyl-CH), 45.53 (CH₂), 53.63 (C-8a), 63.30, 67.00, 72.24, 113.31, 115.25, 125.86, 127.35, 128.20, 128.42, 129.06, 134.10, 136.58, 139.64, 142.04, 155.43 ppm. IR (KBr): v=3030, 2960, 2930, 2880, 1510, 1450, 1180, 1170, 1120, 1015, 820 cm⁻¹. UV/Vis (dioxane): $(\lambda_{\text{max}} (\epsilon) = 223 (22 \ 100), \ 252 \ (13 \ 900), \ 306 \ (9740) \ \text{nm}$ $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=517 (0.1) [M⁺], 366 (5) [Ylid⁺], 185 (11) [Ylid⁺ $-C_7H_7CN-C(CN)_2$], 184 (12), 152 (13), 151 (100), 150 (76), 136 (84), 123 (67), 122 (59), 117 (23), 116 (18), 108 (43), 96 (11), 95 (51), 94 (35), 81 (15), 80 (18), 79 (16), 77 (10), 70 (25), 68 (10), $67 (13), 55 (12), 54 (19), 53 (12), 41 (20). C_{34}H_{39}N_5 (517.7):$ calcd C 78.88, H 7.59, N 13.53; found C 78.89, H 7.63, N 13.48.

1,1,6-Trimethyl-5,7-oxo-2,7b-di-*p*-tolyl-1,1a,4a,7a,7b,7c-hexahydro-*cis*-1a-*cis*-4a-*cisoid*-7a,7b-*transoid*-7b,7c-3,

3a,6-triaza-cyclopenta[b]cyclopropa[e]indene-4,4-dicarbonitrile (9e). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.08$ (s, 3H, syn-H₃CCCH₃), 1.13 (s, 3H, anti-H₃CCCH₃), 1.90 (d, 1H, ${}^{3}J=8.1$ Hz, H-1a), 2.22 (d, 1H, ${}^{3}J=8.1$ Hz, H-7c), 2.37 (s, 3H, tolyl-CH₃), 2.38 (s, 3H, tolyl-CH₃), 2.65 (s, 3H, NCH₃), 3.82 (d, 1H, ³J=7.9 Hz, H-4a), 4.18 (d, 1H, ³*J*=7.9 Hz, H-7a), 7.19–7.21 (m, 2H, aryl-H), 7.23–7.25 (m, 2H, aryl-H), 7.50-7.58 (m, 2H, aryl-H), 7.58-7.60 (m, 2H, aryl-H). ¹³C NMR (101 MHz, CDCl₃): δ =16.99 (*syn*-H₃CCCH₃), 21.06 (tolyl-CH₃), 21.33 (tolyl-CH₃), 22.32 (C-1a), 25.43 (NCH₃), 28.09 (anti-H₃CCCH₃), 29.15 (C-1), 35.98 (C-7c), 54.23 (C-7a), 55.06 (C-4a), 62.30, 68.16, 109.75, 112.75, 125.93, 126.35, 129.33, 129.41, 133.67, 138.56, 138.70, 140.36, 152.20, 170.47, 173.63 ppm. IR (KBr): $\tilde{\nu}$ =3030, 3000, 2960, 2920, 2880, 1780, 1705, 1430, 1370, 1280 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=281 (14 300) nm (1 mol⁻¹ cm⁻¹). EI MS $(70 \text{ eV}): m/z \ (\%) = 478 \ (23), 477 \ (67) \ [M^+], 434 \ (23), 387$ (26), 386 (100) $[M^+ - C_7 H_7]$, 366 (20) $[Ylid^+]$, 365 (14), 344 (26), 303 (10), 186 (14), 185 (25) [Ylid⁺-C₇H₇CN-C(CN)₂], 184 (45), 170 (15), 143 (10), 118 (25), 117 (16), 116 (12), 91 (19), 67 (12). C₂₉H₂₇N₅O₂ (477.6): calcd C 72.94, H 5.70, N 14.67; found C 72.88, H 5.77, N 14.59.

1,1-Dimethyl-2,6a-di-p-tolyl-trans-5-trichloromethyl-1,1a,6a,6b-tetrahydro-6-oxa-cis-1a-transoid-6a,6b-3,3adiaza-cyclopropa[*e*]indene-4,4-dicarbonitrile (11a). ^{1}H NMR (400 MHz, CDCl₃): $\delta = 1.16$ (s, 3H, *syn-H*₃CCCH₃), 1.22 (s, 3H, anti-H₃CCCH₃), 2.01 (d, 1H, ³J=8.1 Hz, H-6b), 2.08 (d, 1H, ${}^{3}J=8.1$ Hz, H-1a), 2.40 (s, 3H, tolyl-CH₃), 2.42 (s, 3H, tolyl-CH₃), 4.76 (s, 1H, H-5), 7.20-7.27 (m, 2H, aryl-H), 7.29-7.31 (m, 2H, aryl-H), 7.56-7.59 (m, 2H, aryl-H), 7.69-7.77 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 16.72$ (syn-H₃CCCH₃), 21.27 (tolyl-CH₃), 21.37 (tolyl-CH₃), 21.58 (cyclopropyl-CH), 24.44 (C-1), 27.49 (anti-H₃CCCH₃), 33.25 (cyclopropyl-CH), 64.62, 92.36 (C-5), 93.54, 95.77, 108.18, 113.19, 126.21, 126.36, 129.41, 129.84, 133.96, 134.28, 140.23, 140.31, 151.20 ppm. IR (KBr): $\tilde{\nu}$ =3060, 3020, 3000, 2960, 2920, 2860, 1175, 1010, 950, 825, 810 cm⁻¹. ¹. UV/ Vis (dioxane): λ_{max} (ϵ)=270 (17 300) nm (l mol⁻¹ cm⁻¹). FD MS (solvent CH_2Cl_2): m/z (%)=512 (100) [M⁺]. C₂₆H₂₃Cl₃N₄O (513.9): calcd C 60.77, 4.51, 10.90; found C 60.68, H 4.58, N 10.93.

1,1-Dimethyl-5-oxo-6-phenyl-2,6a-di-p-tolyl-1,1a,5,6,6a, 6b-hexahydro-cis-1a-cisoid-6a,6b-3,3a,6-triaza-cyclopropa[*e*]indene-4,4-dicarbonitrile (11b). ¹H NMR (250 MHz, CDCl₃): δ =1.17 (s, 3H, H₃CCCH₃), 1.20 (s, 3H, H_3 CCCH₃), 2.10 (d, 1H, 3J =9.3 Hz, cyclopropyl-H), 2.33 (s, 3H, tolyl-CH₃), 2.36 (d, 1H, ${}^{3}J=9.3$ Hz, cyclopropyl-H), 2.40 (s, 3H, tolyl-CH₃), 7.10-7.50 (m, 11H, aryl-H), 7.65-7.68 (m, 2H, aryl-H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 15.19$ (H₃CCCH₃), 21.02 (tolyl-CH₃), 21.32 (tolyl-CH₃), 26.71 (cyclopropyl-CH), 28.51 (H₃CCCH₃), 29.76, 37.23 (cyclopropyl-CH), 56.01, 79.31, 110.10, 110.25, 124.73, 125.63, 125.74, 128.08, 129.33, 129.51, 129.91, 133.85, 134.11, 136.35, 139.96, 140.05, 151.07, 157.17 ppm. IR (KBr): $\tilde{\nu}$ =3040, 2960, 2920, 2870, 1740 1505, 1495, 1485, 1405, 1370, 1350, 1300, 1290, 1170, 1150, 800, 740 cm⁻¹. UV/Vis (dioxane): $\lambda_{max}(\epsilon) = 227$ (23 000), 306 (14 500) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z (%)=485 (2) [M⁺], 366 (2) [Ylid⁺], 119 (100) [PhNCO⁺], 118 (70), 117 (14), 91 (87), 86 (11), 84 (22), 65 (11), 64 (40), 63 (18), 51 (12), 49 (16), 41 (13), 39 (12). $C_{31}H_{27}N_5O$ (485.6): calcd C 76.68, H 5.60, N 14.42; found C 75.95, H 5.79, N 14.22.

1,1-Dimethyl-5-thioxo-6-phenyl-2,6a-di-p-tolyl-1,1a,5,6, 6a,6b-hexahydro-cis-1a-cisoid-6a,6b-3,3a,6-triaza-cyclopropa[e]indene-4,4-dicarbonitrile (11c). ¹H NMR (250 MHz, CDCl₃): δ =1.19 (s, 3H, H₃CCCH₃), 1.25 (s, 3H, H_3 CCCH₃), 2.02 (d, 1H, 3J =9.2 Hz, cyclopropyl-H), 2.34 (d, 1H, ${}^{3}J=9.2$ Hz, cyclopropyl-H), 7.12–7.32 (m, 6H, aryl-H), 7.35-7.60 (m, 5H, aryl-H), 7.60-7.75 (m, 2H, aryl-H) ppm. IR (KBr): v=3070, 3040, 2960, 2930, 2880, 1420, 1410, 1375, 1270, 1230 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=219 (28 900), 295 (24 800) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%) =501 (7) [M⁺], 366 (23) [Ylid⁺], 302 (14), 249 (25), 185 (19) $[Ylid^+ - C_7H_7CN - C(CN)_2],$ 184 (22), 135 (100)[PhNCS⁺], 117 (12), 116 (11), 91 (11), 77 (61), 51 (30), 50 (12). C₃₁H₂₇N₅S (501.6): calcd C 74.23, H 5.43, N 13.96; found C 74.08, H 5.56, N 13.90.

1,1-Dimethyl-6-thia-5,5-dichloro-2,6a-diphenyl-1,1a,5,6, 6a,6b-hexahydro-*cis***-1a**-*cisoid***-6a,6b-3,3a**-diaza-cyclo**propa**[*e*]**indene-4,4-dicarbonitrile** (**11d**). ¹H NMR (250 MHz, CDCl₃): δ =0.95 (s, 3H, *syn*-*H*₃CCCH₃), 1.18 (s, 3H, *anti*-*H*₃CCCH₃), 2.05 (d, 1H, ³*J*=8.1 Hz, cyclopropyl-H), 2.11 (d, 1H, ³*J*=8.1 Hz, cyclopropyl-H), 7.35– 7.50 (m, 6H, aryl-H), 7.60–7.64 (m, 2H, aryl-H), 7.79–7.84 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =17.0 (*syn*-H₃CCCH₃), 21.2 (cyclopropyl-CH), 27.3 (*anti*-H₃CCCH₃), 28.7 (C-1), 36.6 (cyclopropyl-CH), 79.9, 82.5, 96.6, 108.9, 109.6, 126.0, 126.3, 128.3, 128.8, 129.3, 130.2, 136.2, 142.4, 149.7 ppm. IR (KBr): $\tilde{\nu}$ =3070–2880, 1610, 1440, 1360, 1005, 835, 765, 745, 695 cm⁻¹. FD MS (solvent CH₂Cl₂): *m/z* (%)=452.1 (100) [M⁺], 338.3 (63) [Ylid⁺], 274.2 (15) [Ylid⁺-C(CN)₂]. C₂₃H₁₈Cl₂N₄S (453.4): calcd C 60.93, H 4.00, N 12.36; found C 60.93, H 3.98, N 12.41.

2-(4-Methoxy-benzovl)-3a-(4-methoxy-phenyl)-1,1-dimethyl-1,3a,4,5,6,7,8,9-octahydro-10a-aza-cycloocta[a]pentalene-10,10-dicarbonitrile (14a). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.80 - 1.00$ (m, 1H, CH₂), 1.16 (s, 3H, CH₃), 1.35–1.70 (m, 5H, CH₂), 1.80–2.20 (m, 4H, CH₂), 1.98 (s, 3H, CH₃), 2.43–2.70 (m, 2H, CH₂), 3.79 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 6.75 (s, 1H, olefinic-CH), 6.79-6.90 (m, 2H, aryl-H), 6.90-7.08 (m, 2H, aryl-H), 7.14-7.25 (m, 2H, aryl-H), 7.84-7.99 (m, 2H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =3080, 3010, 2940, 2870, 1640, 1600, 1510, 1305, 1250, 1170 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=233 (27 300), 293 (14 300) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=507 (12) [M⁺], 481 (11) [M⁺-HCN], 135 (100) $[MeOC_6H_4CO^+]$. C₃₂H₃₃N₃O₃ (507.6): calcd C 75.71, H 6.55, N 8.28; found C 74.22, H 6.75, N 7.65, solvent could not be removed completely from the oily compound.

1,1-Dimethyl-2-(4-methyl-benzoyl)-3a-*p*-tolyl-1,3a,4,5,6, **7,8,9-octahydro-10a-aza-cycloocta**[*a*]**pentalene-10,10dicarbonitrile** (14b). ¹H NMR (250 MHz, CDCl₃): δ =0.74–1.00 (m, 1H, CH₂), 1.14 (s, 3H, CH₃), 1.32–1.70 (m, 5H, CH₂), 1.77–2.20 (m, 4H, CH₂), 2.00 (s, 3H, CH₃), 2.31 (s, 3H, tolyl-CH₃), 2.43 (s, 3H, tolyl-CH₃), 2.47–2.70 (m, 2H, CH₂), 6.80 (s, 1H, olefinic-H), 7.03–7.23 (m, 4H, aryl-H), 7.23–7.34 (m, 2H, aryl-H), 7.77–7.80 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.06 (CH₃), 21.30 (CH₃), 21.60 (CH₃), 24.99 (2C, CH₂), 25.22 (CH₂), 26.08 (CH₂), 27.41 (CH₂), 27.79 (CH₂), 31.79 (CH₃), 62.20, 69.56, 88.14, 115.26, 116.12, 126.24, 129.23, 129.40, 130.05, 135.81, 137.85, 138.18 (olefinic-CH), 140.29, 143.70, 144.14, 149.38, 192.29 ppm. IR (KBr): $\tilde{\nu}$ =3070, 3020, 3000, 2950, 2880, 1640, 1600, 1460, 1450, 1325, 1250, 1180, 830, 755 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=226 (20 200), 264 (12 200) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=475 (12) [M⁺], 460 (16) [M⁺-CH₃], 448 (4) [M⁺-HCN], 384 (31) [M⁺-C₇H₇], 119 (100) [C₇H₇CO⁺], 91 (18) [C₇H₇⁺]. C₃₂H₃₃N₃O (475.6): calcd C 80.81, H 6.99, N 8.84; found C 79.55, H 7.30, N 8.28, solvent could not be removed completely from the oily compound.

1,1-Dimethyl-2-benzoyl-3a-phenyl-1,3a,4,5,6,7,8,9-octahydro-10a-aza-cycloocta[a]pentalene-10,10-dicarbo**nitrile** (14d). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71 - 0.88$ (m, 1H, CH₂), 1.14 (s, 3H, CH₃), 1.37–1.50 (m, 3H, CH₂), 1.55-1.62 (m, 2H, CH₂), 1.77-2.17 (m, 4H, CH₂), 2.03 (s, 3H, CH₃), 2.46–2.68 (m, 2H, CH₂), 6.84 (s, 1H, olefinic-H), 7.21-7.35 (m, 5H, aryl-H), 7.45-7.52 (m, 2H, aryl-H), 7.56-7.63 (m, 1H, aryl-H), 7.85-7.90 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.3 (CH₃), 25.0 (CH₂), 25.0 (CH₂), 25.2 (CH₂), 26.1 (CH₂), 27.4 (CH₂), 27.7 (CH₂), 31.8 (CH₃), 62.3, 69.6, 88.3, 115.2, 116.1, 126.3, 128.1, 128.6, 128.6, 129.2, 130.4, 132.9, 138.4, 138.6 (olefinic-CH), 143.2, 143.9, 149.5, 192.6 ppm. IR (KBr): $\tilde{\nu}$ =3090-2870, 2840, 1640, 1590, 1445, 1320, 1175, 730, 700 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=212 $(20\ 400),\ 220\ (19\ 000),\ 252\ (14\ 300)\ nm\ (1\ mol^{-1}\ cm^{-1}).$ EI MS (70 eV): m/z (%)=447.0 (3) [M⁺], 432.9 (2), 420.0 (2), 369.9 (14) $[M^+ - C_6H_5]$, 105.0 (100) $[C_6H_5CO^+]$, 77.1 (29) $[C_6H_5^+]$, 43.3 (43). $C_{30}H_{29}N_3O$ (447.6): calcd C 80.51, H 6.53, N 9.39; found C 79.93, H 6.67, N 9.37.

2-(4-Chloro-benzoyl)-3a-(4-chloro-phenyl)-1,1-dimethyl-1.3a,4,5,6,7,8,9-octahydro-10a-aza-cycloocta[a]pentalene-10,10-dicarbonitrile (14e). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.75 - 1.00$ (m, 1H, CH₂), 1.14 (s, 3H, CH₃), 1.33-1.74 (m, 5H, CH₂), 1.78-2.20 (m, 4H, CH₂), 2.01 (s, 3H, CH₃), 2.43–2.70 (m, 2H, CH₂), 6.76 (s, 1H, olefinic-H), 7.16-7.38 (m, 4H, aryl-H), 7.40-7.55 (m, 2H, aryl-H), 7.73-7.90 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.18 (CH₃), 24.97 (CH₂), 25.02 (CH₂), 25.16 (CH₂), 26.04 (CH₂), 27.32 (CH₂), 27.80 (CH₂), 31.83 (CH₃), 62.15, 69.76, 87.85, 114.86, 115.92, 127.69, 128.90, 128.95, 130.56, 131.00, 134.23, 136.45, 137.68 (olefinic-CH), 139.58, 141.73, 143.41, 149.83, 191.15 ppm. IR (KBr): $\tilde{\nu}$ =3100, 3070, 3010, 2930, 2860, 1650, 1640, 1580, 1480, 1455, 1450, 1390, 1310, 1275, 1240, 1175, 1080, 1010, 840, 830 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=228 (26 200), 262 (16 100) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z (%)=515 (7) [M⁺], 502 (13), 500 (18) $[M^+-CH_3]$, 406 (12), 405 (9), 404 (33) $[M^+-C_6H_4Cl]$, 141 (33), 140 (8), 139 (100) [C₆H₄ClCO⁺]. C₃₀H₂₇Cl₂N₃O (516.5): calcd C 69.77, H 5.27, N 8.14; found C 69.58, H 5.42, N 8.09.

2-(4-Trifluoromethyl-benzoyl)-3a-(4-trifluoromethylphenyl)-1,1-dimethyl-1,3a,4,5,6,7,8,9-octahydro-10a-

5459

aza-cycloocta[a]pentalene-10,10-dicarbonitrile (14f). ¹H NMR (250 MHz, CDCl₃): δ =0.73-0.96 (m, 1H, CH₂), 1.12 (s, 3H, CH₃), 1.32-1.75 (m, 5H, CH₂), 1.80-2.20 (m, 4H, CH₂), 2.05 (s, 3H, CH₃), 2.44-2.74 (m, 2H, CH₂), 6.82 (s, 1H, olefinic-H), 7.42-7.45 (m, 2H, aryl-H), 7.57-7.61 (m, 2H, aryl-H), 7.76-7.79 (m, 2H, aryl-H), 7.95-7.99 (m, 2H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =3090, 3020, 2950, 2880, 1660, 1325, 1170, 1130 1070 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=226 (19 900), 248 (16 000) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=583 (1) [M⁺], 568 (8) [M⁺-CH₃], 438 (15) [M⁺-C₆H₄CF₃], 173 (100) [F₃CC₆H₄CO⁺], 145 (20) [C₆H₄CF₃⁺]. C₃₂H₂₇F₆N₃O (583.6): calcd C 65.86, H 4.66, N 7.20; found C 65.83, H 4.37, N 7.23.

2-(Furan-2-carbonyl)-3a-furan-2-yl-1,1-dimethyl-1,3a,4, 5,6,7,8,9-octahydro-10a-aza-cycloocta[a]pentalene-10,10dicarbonitrile (14h). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.05 - 1.18$ (m, 1H, CH₂), 1.30 (s, 3H, CH₃), 1.44 - 1.72 (m, 5H, CH₂), 1.83–1.95 (m, 2H, CH₂), 1.98 (s, 3H, CH₃), 2.06-2.25 (m, 2H, CH₂), 2.45-2.66 (m, 2H, CH₂), 6.22 (dd, 1H, ${}^{3}J=3.3$ Hz, ${}^{4}J=0.9$ Hz, aryl-H), 6.34 (dd, 1H, ${}^{3}J=3.3$ Hz, ${}^{3}J=1.8$ Hz, aryl-H), 6.56 (dd, 1H, ${}^{3}J=3.6$ Hz, ³*J*=1.7 Hz, aryl-H), 6.92 (s, 1H, olefinic-H), 7.23 (dd, 1H, ${}^{3}J=3.6$ Hz, ${}^{4}J=0.8$ Hz, aryl-H), 7.40 (dd, 1H, ${}^{3}J=1.8$ Hz, ${}^{4}J=0.9$ Hz, aryl-H), 7.56 (dd, 1H, ${}^{3}J=1.7$ Hz, ${}^{4}J=0.8$ Hz, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.5 (CH₃), 24.8 (CH₂), 25.0 (CH₂), 25.3 (CH₂), 26.0 (CH₂), 27.3 (CH₂), 27.4 (CH₂), 31.3 (CH₃), 61.5, 70.0, 84.4, 108.3, 110.7, 112.4, 114.8, 115.6, 120.0, 131.4, 134.8 (olefinic-CH), 141.8, 142.6, 147.3, 149.2, 152.6, 153.6, 178.4 ppm. IR (KBr): $\tilde{\nu}$ =3160, 3120, 3080, 2990, 2940, 2865, 1640, 1605, 1465, 1390, 1330, 1270, 1230, 1190, 1160, 1025, 905, 890, 760, 750 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=228$ (15 400), 290 (12 200) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=427.3 (42) [M⁺], 412.2 (97) $[M^+-CH_3]$, 332.2 (27) $[M^+-furan-2-carbonyl]$, 291.1 (15), 94.8 (100) [furan-2-carbonyl⁺]. $C_{26}H_{25}N_{3}O$ (427.5): calcd C 73.05, H 5.89, N 9.83; found C 72.83, H 6.04, N 9.71.

6-(4-Methoxy-benzoyl)-7a-(4-methoxy-phenyl)-2-N,Ndimethylamino-1,5,5-trimethyl-5,7a-dihydro-pyrrolizine-**3,3-dicarbonitrile** (15a). ¹H NMR (250 MHz, $CDCl_3$): $\delta = 1.14$ (s, 3H, CH₃), 1.49 (s, 3H, olefinic-CH₃), 1.95 (s, 3H, CH₃), 2.96 (s, 6H, N(CH₃)₂), 3.78 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 6.77 (s, 1H, olefinic-H), 6.80–6.88 (m, 2H, aryl-H), 6.94-7.04 (m, 2H, aryl-H), 7.12-7.23 (m, 2H, aryl-H), 7.88-8.00 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 11.96$ (olefinic-CH₃), 21.13 (CH₃), 31.57 (CH₃), 42.72 (N(CH₃)₂), 55.24 (OCH₃), 55.49 (OCH₃), 58.38, 69.55, 85.29, 113.85, 113.97, 115.34, 116.81, 124.95, 127.38, 131.20, 131.62, 136.15, 136.84 (olefinic-CH), 138.76, 149.05, 159.27, 163.63, 191.30 ppm. IR (KBr): $\tilde{\nu}$ =3070, 3040, 3010, 2950, 2880, 2850, 2810, 1670, 1650, 1635, 1590, 1565, 1500, 1465, 1455, 1450, 1440, 1300, 1245, 1180, 1170, 1130, 1020, 840, 830, 770, 760 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=231 (26 400), 287 nm (16 900) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* $(\%)=483 (11), 482 (33) [M^+], 467 (12) [M^+ - CH_3], 455 (7)$ $[M^+-HCN]$, 399 (9) $[M^+-(CH_3)_2NC_3H_3]$, 375 (12) $[M^+ - C_6 H_4 OMe], 347 (7) [M^+ - MeOC_6 H_4 CO], 267 (11),$ 135 (100) [MeOC₆H₄CO⁺]. $C_{29}H_{30}N_4O_3$ (482.6): calcd C 72.18, H 6.27, N 11.61; found C 72.09, H 6.38, N 11.57.

2-N,N-Dimethylamino-1,5,5-trimethyl-6-(4-methylbenzoyl)-7a-p-tolyl-5,7a-dihydro-pyrrolizine-3,3-dicarbo**nitrile** (15b). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.12$ (s, 3H, CH₃), 1.47 (s, 3H, olefinic-CH₃), 1.97 (s, 3H, CH₃), 2.31 (s, 3H, tolyl-CH₃), 2.43 (s, 3H, tolyl-CH₃), 2.96 (s, 6H, N(CH₃)₂), 6.81 (s, 1H, olefinic-H), 7.04–7.18 (m, 4H, aryl-H), 7.28-7.31 (m, 2H, aryl-H), 7.80-7.83 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =11.93 (olefinic-CH₃), 21.05 (CH₃), 21.15 (CH₃), 21.61 (CH₃), 31.55 (CH₃), 42.70 (N(CH₃)₂), 58.42, 69.47, 85.46, 115.34, 116.72, 124.77, 126.09, 129.23, 129.27, 129.41, 135.89, 137.65, 137.96 (olefinic-CH), 138.82, 141.18, 143.60, 149.04, 192.32 ppm. IR (KBr): $\tilde{\nu}$ =3070, 3050, 3010, 2950, 2880, 2820, 1675, 1645, 1600, 1325, 1180 cm⁻ UV/Vis (dioxane): λ_{max} (ϵ)=222 (22 400), 264 (17 900) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=450 (5) $[M^+]$, 435 (5) $[M^+-CH_3]$, 367 (3) $[M^+-(CH_3)_2NC_3H_3]$, 359 (10) $[M^+ - C_7 H_7]$, 120 (10), 119 (100) $[C_7 H_7 CO^+]$, 91 (30) $[C_7H_7^+]$. $C_{29}H_{30}N_4O$ (450.6): calcd C 77.30, H 6.71, N 12.43; found C 77.00, H 6.77, N 12.55.

2-N,N-Dimethylamino-1,5,5-trimethyl-6-benzoyl-7aphenyl-5,7a-dihydro-pyrrolizine-3,3-dicarbonitrile (15d). ¹H NMR (400 MHz, CDCl₃): δ =1.11 (s, 3H, CH₃), 1.48 (s, 3H, olefinic-CH₃), 2.00 (s, 3H, CH₃), 2.97 (s, 6H, N(CH₃)₂), 6.86 (s, 1H, olefinic-H), 7.23-7.32 (m, 5H, aryl-H), 7.48-7.52 (m, 2H, aryl-H), 7.58-7.62 (m, 1H, aryl-H), 7.89-7.92 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 12.0$ (olefinic-CH₃), 21.0 (CH₃), 31.4 (CH₃), 42.6 (N(CH₃)₂), 58.4, 69.3, 85.5, 115.1, 116.6, 123.5, 126.1, 127.9, 128.5, 128.6, 129.2, 132.8, 138.3, 138.6 (olefinic-CH), 138.7, 144.1, 148.9, 192.6 ppm. IR (KBr): $\tilde{\nu}$ =3080-2810, 1680, 1600, 1450, 1325, 1130, 720, 695 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 206$ (11 500), 212 $(20\ 700),\ 250\ (18\ 500)\ nm\ (1\ mol^{-1}\ cm^{-1}).$ EI MS $(70\ eV)$: m/z (%)=422.2 (8) [M⁺], 345.1 (22), 104.9 (100), 77.0 (37). C₂₇H₂₆N₄O (422.5): calcd C 76.75, H 6.20, N 13.26; found C 76.70, H 6.32, N 13.19.

6-(4-Chloro-benzovl)-7a-(4-chloro-phenvl)-2-N,N-dimethylamino-1,5,5-trimethyl-5,7a-dihydro-pyrrolizine-**3,3-dicarbonitrile** (15e). ¹H NMR (250 MHz, $CDCl_3$): $\delta = 1.12$ (s, 3H, CH₃), 1.49 (s, 3H, olefinic-CH₃), 1.98 (s, 3H, CH₃), 2.97 (s, 6H, N(CH₃)₂), 6.78 (s, 1H, olefinic-H), 7.14-7.24 (m, 2H, aryl-H), 7.24-7.33 (m, 2H, aryl-H), 7.43-7.53 (m, 2H, aryl-H), 7.80-7.90 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =11.94 (olefinic-CH₃), 21.00 (CH₃), 31.59 (CH₃), 42.53 (N(CH₃)₂), 58.29, 69.59, 85.21, 114.91, 116.52, 122.15, 127.54, 128.90, 128.96, 130.60, 133.95, 136.53, 137.59 (olefinic-CH), 139.14, 139.47, 142.71, 149.31, 191.19 ppm. IR (KBr): $\tilde{\nu}$ =3100, 3070, 3000, 2940, 2800, 1665, 1640, 1315, 1085, 1010 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=223 (23 800), 262 (19 400) nm (l mol⁻¹ cm⁻¹). EI MS $(70 \text{ eV}): m/z \ (\%)=492 \ (16), \ 491 \ (7), \ 490 \ (24) \ [\text{M}^+], \ 475$ (11) $[M^+ - CH_3]$, 407 (8) $[M^+ - Me_2N - C_3H_3]$, 381 (14), 380 (10), 379 (40) $[M^+ - C_6 H_4 Cl]$, 351 (10) $[M^+ - C_6 H_4 ClCO]$, 141 (33), 140 (8) 139 (100) $[C_6H_4ClCO^+]$, 111 (5) $[C_6H_4Cl^+]$, 83 (13) $[(CH_3)_2N-C_3H_3^+]$. $C_{27}H_{24}Cl_2N_4O$ (491.4): calcd C 65.99, H 4.92, N 11.40; found C 66.03, H 5.08, N 11.35.

6-(4-Trifluoromethyl-benzoyl)-7a-(4-trifluoromethyl-

phenyl)-2-N,N-dimethylamino-1,5,5-trimethyl-5,7a-dihydro-pyrrolizine-3,3-dicarbonitrile (15f). ¹H NMR $(250 \text{ MHz}, \text{ CDCl}_3): \delta = 1.10 \text{ (s, 3H, CH}_3), 1.49 \text{ (s, 3H, }$ olefinic-CH₃), 2.02 (s, 3H, CH₃), 2.98 (s, 6H, N(CH₃)₂), 6.85 (s, 1H, olefinic-H), 7.38-7.41 (m, 2H, aryl-H), 7.56-7.60 (m, 2H, aryl-H), 7.77-7.80 (m, 2H, aryl-H), 7.98-8.02 (m, 2H, aryl-H) ppm. 13 C NMR (63 MHz, CDCl₃): δ =11.91 (olefinic-CH₃), 20.95 (CH₃), 31.59 (CH₃), 42.45 (N(CH₃)₂), 58.32, 69.64, 85.39, 114.72, 116.41, 120.97, 123.62 (q, ${}^{1}J=272.7$ Hz, CF₃), 123.85 (q, ${}^{1}J=272.1$ Hz, CF₃), 125.71 (q, ${}^{3}J=3.6$ Hz), 126.52, 129.43, 130.44 (q, ${}^{2}J=32.7$ Hz), 134.33 (q, ${}^{2}J=32.9$ Hz), 138.18 (olefinic-CH), 139.42, 141.08 (${}^{5}J=1.3$ Hz), 148.15 (${}^{5}J=1.3$ Hz), 149.62, 191.27 ppm. IR (KBr): $\tilde{\nu}$ =3070, 3010, 2940, 2800, 1650, 1320, 1160, 1120, 1060 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=244 \text{ nm} (17 900) \text{ nm} (1 \text{ mol}^{-1} \text{ cm}^{-1}). \text{ EI MS} (70 \text{ eV}):$ m/z (%)=559 (14), 558 (39) [M⁺], 543 (9) [M⁺-CH₃], 539 (5) $[M^+-F]$, 414 (11), 413 (43) $[M^+-C_6H_4CF_3]$, 385 (14) $[M^+-F_3CC_6H_4CO]$, 173 (100) $[F_3CC_6H_4CO^+]$, 145 (14) $[C_6H_4CF_3^+]$, 83 (25) $[(CH_3)_2N-C_3H_3^+]$. $C_{29}H_{24}F_6N_4O$ (558.5): calcd C 62.36, H 4.33, N 10.03; found C 63.00, H 4.64, N 9.51.

2-N,N-Dimethylamino-1,5,5-trimethyl-6-(1-methyl-1Hpyrrol-2-carbonyl)-7a-(1-methyl-1H-pyrrol-2-yl)-5,7adihydro-pyrrolizine-3,3-dicarbonitrile (15g). ¹H NMR (250 MHz, CDCl₃): δ =1.27 (s, 3H, CH₃), 1.57 (s, 3H, olefinic-CH₃), 1.93 (s, 3H, CH₃), 2.97 (s, 6H, N(CH₃)₂), 3.70 (s, 3H, NCH₃), 3.97 (s, 3H, NCH₃), 5.85 (dd, 1H, ${}^{3}J=3.7$ Hz, ${}^{3}J=1.8$ Hz, aryl-H), 5.95 (dd, 1H, ${}^{3}J=3.7$ Hz, ${}^{4}J=2.7$ Hz, aryl-H), 6.15 (dd, 1H, ${}^{3}J=4.1$ Hz, ${}^{3}J=2.5$ Hz, aryl-H), 6.58 (dd, 1H, ${}^{4}J=2.7$ Hz, ${}^{3}J=1.8$ Hz, aryl-H), 6.65 (s, 1H, olefinic-H), 6.90 (dd, 1H, ${}^{3}J=2.5$ Hz, ${}^{4}J=1.7$ Hz, aryl-H), 7.01 (dd, 1H, ${}^{3}J=4.1$ Hz, ${}^{4}J=1.7$ Hz, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =11.8 (olefinic-CH₃), 21.5 (CH₃), 30.4 (CH₃), 35.2 (NCH₃), 37.2 (NCH₃), 42.8 (N(CH₃)₂), 58.0, 69.8, 82.2, 106.3, 108.4, 109.0, 115.1, 116.3, 122.4, 122.9, 124.8, 130.3, 131.3, 132.0, 134.7 (olefinic-CH), 139.1, 149.5, 182.0 ppm. IR (KBr): $\tilde{\nu}$ =3130, 3010, 2950, 2820, 1670, 1610, 1590, 1405, 1375, 1355, 1240, 1140, 1060, 790, 740, 705 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=228$ (16 300), 306 (14 700) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=428.3 (42) [M⁺], 413.3 (18) $[M^+-CH_3]$, 320.2 (12), 107.9 (100), 93.9 (20). C₂₅H₂₈N₆O (428.5): calcd C 70.08, H 6.59, N 19.61; found C 69.62, H 6.80, N 19.27.

2-*N*,*N*-**Dimethylamino-6-(furan-2-carbonyl)-7a-furan-2-yl-1,5,5-trimethyl-5,7a-dihydro-pyrrolizine-3,3-dicarbonitrile (15h). ¹H NMR (250 MHz, CDCl₃): \delta=1.30 (s, 3H, CH₃), 1.62 (s, 3H, olefinic-CH₃), 1.95 (s, 3H, CH₃), 2.97 (s, 6H, N(CH₃)₂), 6.20 (dd, 1H, ³***J***=3.3 Hz, ⁴***J***=0.8 Hz, aryl-H), 6.33 (dd, 1H, ³***J***=3.3 Hz, ³***J***=1.8 Hz, aryl-H), 6.56 (dd, 1H, ³***J***=3.6 Hz, ³***J***=1.7 Hz, aryl-H), 6.92 (s, 1H, olefinic-H), 7.28 (dd, 1H, ³***J***=3.6 Hz, ⁴***J***=0.8 Hz, aryl-H), 7.41 (dd, 1H, ³***J***=1.8 Hz, ⁴***J***=0.8 Hz, aryl-H), 7.68 (dd, 1H, ³***J***=1.7 Hz, ⁴***J***=0.8 Hz, aryl-H), 7.68 (dd, 1H, ³***J***=1.7 Hz, ⁴***J***=0.8 Hz, aryl-H), 7.68 (dd, 1H, ³***J***=1.7 Hz, ⁴***J***=0.8 Hz, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): \delta=11.5 (olefinic-CH₃), 21.4 (CH₃), 31.1 (CH₃), 42.6 (N(CH₃)₂), 57.9, 69.9, 82.0, 108.4, 110.5, 112.3, 114.9, 116.2, 120.1, 121.4, 134.8 (olefinic-CH), 139.9, 142.7, 147.3, 148.7, 152.6, 154.2, 178.5 ppm. IR (KBr): \tilde{\nu}=3140, 3020, 2940, 2880, 2830, 1675, 1645, 1470, 1395, 1325, 1195, 1150, 1030, 790, 780, 760 cm⁻¹. UV/** Vis (dioxane): λ_{max} (ϵ)=228 (16 800), 288 (13 500) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=402.5 (34) [M⁺], 387.3 (28) [M⁺-CH₃], 319.4 (28) [M⁺-(CH₃)₂NC₃H₃], 307.3 (17) [M⁺-furan-2-carbonyl], 240.1 (49), 94.9 (100) [furan-2-carbonyl⁺]. C₂₃H₂₂N₄O₃ (402.4): calcd C 68.65, H 5.51, N 13.92; found C 68.24, H 5.89, N 13.43.

1,9b-Bis-(4-methoxy-phenyl)-4,5,6,7,8,9,9b,10,11,12decahydro-3H-2,2a-diaza-cycloocta[a]as-indacene-3,3dicarbonitrile (17a). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.70 - 0.79$ (m, 1H, CH₂), 1.46 - 1.67 (m, 5H, CH₂), 1.92-2.60 (m, 10H, CH₂), 2.82-3.09 (m, 2H, CH₂), 3.76 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 6.80–6.87 (m, 4H, aryl-H), 7.26–7.29 (m, 2H, aryl-H), 7.54–7.58 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =23.4 (CH₂), 24.5 (CH₂), 25.3 (CH₂), 26.06 (CH₂), 26.08 (CH₂), 27.4 (CH₂), 28.0 (CH₂), 33.0 (CH₂), 34.8 (CH₂), 55.27 (OCH₃), 55.30 (OCH₃), 65.1, 74.4, 112.5, 113.6, 113.8, 114.0, 127.6, 127.7, 128.6, 129.1, 129.8, 133.8, 138.7, 145.7, 153.7, 159.6, 160.4 ppm. IR (KBr): $\tilde{\nu}$ =3020, 2940, 2875, 1610, 1515, 1465, 1365, 1330, 1305, 1260, 1180, 1030, 850 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=234 (25 600), 267 (13 600), 336 (5550) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=504.4 (26) [M⁺], 371.2 (100) [M⁺-H₃COC₆H₄CN], 343.2 (18), 330.2 (51), 316.2 (13), 280.1 (59), 225.0 (64), 133.9 (30), 118.9 (13), 107.9 (8) [C₆H₄OCH₃⁺]. C₃₂H₃₂N₄O₂ (504.6): calcd C 76.17, H 6.39, N 10.40; found C 75.95, H 6.56, N 10.95.

1,9b-Di-p-tolyl-4,5,6,7,8,9,9b,10,11,12-decahydro-3H-2,2a-diaza-cycloocta[a]as-indacene-3,3-dicarbonitrile (17b). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.72 - 0.76$ (m, 1H, CH₂), 1.44–1.61 (m, 5H, CH₂), 1.90–2.61 (m, 10H, CH₂), 2.29 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.80-3.09 (m, 2H, CH₂), 7.07-7.14 (m, 4H, aryl-H), 7.22-7.25 (m, 2H, aryl-H), 7.47–7.50 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.0 (CH₃), 21.3 (CH₃), 23.5 (CH₂), 24.5 (CH₂), 25.3 (CH₂), 26.05 (CH₂), 26.07 (CH₂), 27.4 (CH₂), 28.0 (CH₂), 32.9 (CH₂), 34.8 (CH₂), 65.2, 75.1, 112.5, 113.9, 126.3, 127.6, 127.7,128.8, 129.1, 129.9, 133.1, 138.1, 138.6, 138.9, 139.0, 145.8, 153.0 ppm. IR (KBr): $\tilde{\nu}$ =3050, 2940, 2875, 1615, 1510, 1460, 1450, 1410, 1370, 1330, 1295, 1250, 1220, 1185, 1130, 1025, 960, 820, 730 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=237 (24 500), 253 (20 800), 344 (4990) nm (l mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=472.4 (6) [M⁺], 381.3 (100) $[M^+ - C_7 H_7]$, 311.2 (20), 299.2 (15), 90.9 (19), $[C_7 H_7^+]$. C₃₂H₃₂N₄ (472.6): calcd C 81.33, H 6.82, N 11.85; found C 81.22, H 6.73, N 11.87.

1,9b-Di-phenyl-4,5,6,7,8,9,9b,10,11,12-decahydro-3*H***-2,2a-diaza-cycloocta**[*a*]*as*-indacene-3,3-dicarbonitrile (**17c**). ¹H NMR (250 MHz, CDCl₃): δ =0.65–0.74 (m, 1H, CH₂), 1.39–1.85 (m, 2H, CH₂), 1.89–2.61 (m, 13H, CH₂), 2.82–2.95 (m, 1H, CH₂), 2.99–3.14 (m, 1H, CH₂), 7.21–7.35 (m, 8H, aryl-H), 7.39–7.44 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =23.5 (CH₂), 24.5 (CH₂), 25.3 (CH₂), 26.0 (CH₂), 26.1 (CH₂), 27.5 (CH₂), 28.0 (CH₂), 32.8 (CH₂), 34.9 (CH₂), 65.3, 75.3, 112.4, 113.8, 126.3, 127.7, 127.9, 128.2, 128.4, 128.5 129.0, 129.9, 135.8, 138.6, 141.9, 145.6, 153.7 ppm. IR (KBr): $\tilde{\nu}$ =3060, 3020, 2920, 2860, 1485, 1440, 1350, 1320, 1070, 1045, 1020, 775,

695 cm⁻¹. UV/Vis (dioxane): λ_{max} (ε)=242 (19 200), 329 (4410) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=444.4 (4) [M⁺], 367.3 (100) [M⁺-C₆H₅], 297.1 (11). C₃₀H₂₈N₄ (444.6): calcd C 81.05, H 6.35, N 12.60; found C 80.98, H 6.36, N 12.62.

1,9b-Diphenyl-4,5,6,7,8,9,9b,10,11,12,13-undecahydro-2,2a-diaza-cycloocta[b]cyclohexa[e]indene-3,3-dicarbo**nitrile** (17d). ¹H NMR (250 MHz, CDCl₃): δ =0.50–0.59 (m, 1H, CH₂), 1.40–2.75 (m, 19H, CH₂), 7.21–7.35 (m, 8H, aryl-H), 7.39-7.44 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =22.26 (CH₂), 22.3 (CH₂), 24.9 (CH₂), 25.0 (CH₂), 26.4 (CH₂), 27.0 (CH₂), 27.4 (CH₂), 27.6 (CH₂), 28.6 (CH₂), 28.9 (CH₂), 63.5, 74.0, 112.4, 113.5, 124.5, 126.8, 128.1, 128.2, 128.3, 128.4 128.6, 129.0, 132.0, 135.0, 140.9, 145.9, 159.2 ppm. IR (KBr): $\tilde{\nu}$ =3095, 3070, 3040, 2940, 2870, 1450, 1325, 1175, 1100, 1075, 1030, 770, 750, 730, 700 cm⁻¹. UV/Vis (dioxane): $\lambda_{\text{max}}(\epsilon) = 234 (15 \ 300), \ 321 (3940) \ \text{nm} (1 \ \text{mol}^{-1} \ \text{cm}^{-1}).$ EI MS (70 eV): m/z (%)=458.5 (7) [M⁺], 432.4 (5) $[M^+-HCN]$, 381.4 (100) $[M^+-C_6H_5]$. $C_{31}H_{30}N_4$ (458.6): calcd C 81.19, H 6.59, N 12.22; found C 80.96, H 6.68, N 12.14.

1,9b-Bis-(4-trifluoromethyl-phenyl)-4,5,6,7,8,9,9b,10,11, 12-decahydro-3*H***-2,2a-diaza-cycloocta[***a***]***as***-indacene-3,3-dicarbonitrile (17e).** ¹H NMR (250 MHz, CDCl₃): δ =0.63–0.85 (m, 1H, CH₂), 1.43–1.72 (m, 5H, CH₂), 1.95–2.64 (m, 10H, CH₂), 2.84–2.96 (m, 1H, CH₂), 3.04– 3.17 (m, 1H, CH₂), 7.48–7.51 (m, 2H, aryl-H), 7.58–7.62 (m, 4H, aryl-H), 7.70–7.77 (m, 2H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =3070, 2945, 2875, 1620, 1445, 1410, 1330, 1170, 1130, 1080, 1020, 850, 780 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=242 (21 000), 254 (23 600), 346 (5180) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=580.4 (3) [M⁺], 561 (3) [M⁺-F], 435.3 (100) [M⁺-C₆H₄CF₃], 365.2 (25). C₃₂H₂₆F₆N₄ (580.4): calcd C 66.22, H 4.51, N 9.65; found C 66.26, H 4.70, N 9.66.

1-Methylsulfanyl-4,5,6,7,8,9-octahydro-12*H***-2,2a-diazacycloocta[***a***]***as***-indacene-3-carbonitrile (17f). ¹H NMR (250 MHz, CDCl₃): \delta=1.32–1.47 (m, 4H, CH₂), 1.56– 1.75 (m, 4H, CH₂), 2.22 (qu, 2H, CH₂), 2.62 (s, 3H, SCH₃), 2.75–2.85 (m, 6H, CH₂), 3.16 (t, 2H, CH₂) ppm. ¹³C NMR (63 MHz, CDCl₃): \delta=12.5 (SCH₃), 22.5 (CH₂), 23.3 (CH₂), 24.1 (CH₂), 25.5 (CH₂), 25.8 (CH₂), 29.9 (CH₂), 31.1 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 98.0, 112.2, 113.6, 125.5, 128.2, 134.7, 139.7, 151.0 ppm. IR (KBr): \tilde{\nu}=2940, 2860, 2210, 1600, 1540, 1440, 1310, 1265, 1170, 1125, 980 cm⁻¹. UV/Vis (dioxane): \lambda_{max} (\epsilon)=265 (14 800), 277 (26 200), 287 (37 400), 341 (2160) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV):** *m/z* **(%)=311.2 (100) [M⁺], 283.2 (36), 268.1 (33), 256.1 (18). C₁₈H₂₁N₃S (311.4): calcd C 69.43, H 6.80, N 13.49; found C 69.31, H 6.76, N 13.40.**

3,3-Dicyano-5,8b-bis-(4-methoxy-phenyl)-6,7,8,8b-tetrahydro-3*H***-3a,4-diaza-***as***-indacene-1,2-dicarboxylic acid dimethyl ester (18a). ¹H NMR (250 MHz, CDCl₃): \delta=1.98–2.24 (m, 2H, CH₂), 2.51–2.62 (m, 1H, CH₂), 2.72–2.97 (m, 3H, CH₂), 3.74 (s, 3H, CO₂CH₃), 3.77 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.98 (s, 3H, CO₂CH₃), 6.83–6.91 (m, 4H, aryl-H), 7.20–7.26 (m, 2H, aryl-H), 7.53–7.59 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz,** CDCl₃): δ =23.3 (CH₂), 33.1 (CH₂), 34.1 (CH₂), 53.2 (CO₂CH₃), 53.6 (CO₂CH₃), 55.29 (OCH₃), 55.34 (OCH₃), 61.0, 74.7, 110.7, 112.1, 113.6, 114.1, 125.4, 127.8, 128.0, 129.2, 130.6, 130.8, 137.5, 151.4, 153.4, 158.9, 160.2, 160.7, 162.0 ppm. IR (KBr): $\tilde{\nu}$ =3020, 2970, 2860, 1740, 1730, 1610, 1510, 1440, 1285, 1260, 1180, 1035, 835, 750 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=228 (28 200), 277 (12 700), 320 (6960) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m*/*z* (%)=538.5 (20) [M⁺], 431.3 (100) [M⁺-C₆H₄OCH₃], 107.9 (37) [C₆H₄OCH₃⁺]. C₃₀H₂₆N₄O₆ (538.5): calcd C 66.91, H 4.87, N 10.40; found C 66.72, H 5.01, N 10.30.

3,3-Dicyano-5,8b-di-p-tolyl-6,7,8,8b-tetrahydro-3H-3a, 4-diaza-as-indacene-1,2-dicarboxylic acid dimethyl ester (18b). ¹H NMR (250 MHz, CDCl₃): δ =1.97–2.26 (m, 2H, CH₂), 2.31 (s, 3H, tolyl-CH₃), 2.34 (s, 3H, tolyl-CH₃), 2.39-2.61 (m, 1H, CH₂), 2.73-2.95 (m, 3H, CH₂), 3.75 (s, 3H, CO₂CH₃), 3.97 (s, 3H, CO₂CH₃), 7.12–7.24 (m, 6H, aryl-H), 7.47-7.50 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 21.1$ (CH₃), 21.3 (CH₃), 23.3 (CH₂), 33.0 (CH₂), 34.1 (CH₂), 53.2 (CO₂CH₃), 53.6 (CO₂CH₃), 61.1, 75.1, 110.7, 112.1, 125.5, 126.2, 127.6, 129.0, 129.5, 130.8, 132.6, 135.8, 137.4, 139.3, 139.5, 151.4, 153.4, 158.9, 162.0 ppm. IR (KBr): $\tilde{\nu}$ =3070, 3040, 2960, 2930, 2870, 1720, 1640, 1610, 1435, 1330, 1290, 1150, 1050, 1020, 980, 830, 730 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=240 (19 100), 324 (4200) nm ($1 \text{ mol}^{-1} \text{ cm}^{-1}$). EI MS (70 eV): m/z (%)=506.5 (22) [M⁺], 415.4 (100) [M⁺-C₇H₇], 91.0. C₃₀H₂₆N₄O₄ (506.5): calcd C 71.14, H 5.17, N 11.06; found C 70.89, H 5.47, N 11.00.

3,3-Dicyano-5,8b-diphenyl-6,7,8,8b-tetrahydro-3H-3a,4diaza-as-indacene-1,2-dicarboxylic acid dimethyl ester (18c). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.99 - 2.27$ (m, 2H, CH₂), 2.49–2.62 (m, 1H, CH₂), 2.75–2.98 (m, 3H, CH₂), 3.73 (s, 3H, CO₂CH₃), 3.98 (s, 3H, CO₂CH₃), 7.25-7.41 (m, 8H, aryl-H), 7.55-7.63 (m, 2H, aryl-H) ppm. ¹³C NMR $(63 \text{ MHz}, \text{CDCl}_3): \delta = 23.3 (\text{CH}_2), 32.9 (\text{CH}_2), 34.2 (\text{CH}_2),$ 53.2 (CO₂CH₃), 53.7 (CO₂CH₃), 61.2, 75.3, 110.6, 112.0, 125.6, 126.2, 127.7, 128.3, 128.8, 129.3, 129.4, 130.8, 135.2, 137.5, 138.8, 151.2, 153.5, 158.8, 161.9 ppm. IR (KBr): $\tilde{\nu}$ =3090, 3060, 3040, 2960, 2920, 2860, 1740, 1650, 1490, 1440, 1360, 1340, 1325, 1280, 1150, 1130, 1080, 1030, 980, 940, 775, 745, 695 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=238 (22 300), 324 (4120) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=478.4 (5) [M⁺], 401.3 (100) $[M^+-C_6H_5]$, 343.3 (13). $C_{28}H_{22}N_4O_4$ (478.5): calcd C 70.28, H 4.63, N 11.71; found C 70.14, H 4.90, N 11.61.

3,3-Dicyano-5,9b-diphenyl-3,6,7,8,9,9b-hexahydro-pyrrolo[2,1-*a***]phthalazine-1,2-dicarboxylic** acid dimethyl **ester** (**18d**). ¹H NMR (250 MHz, CDCl₃): δ =1.49–1.65 (m, 1H, CH₂), 1.70–2.02 (m, 4H, CH₂), 2.27–2.50 (m, 3H, CH₂), 3.71 (s, 3H, CO₂CH₃), 4.00 (s, 3H, CO₂CH₃), 7.28–7.44 (m, 10H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.8 (CH₂), 22.1 (CH₂), 27.5 (CH₂), 28.0 (CH₂), 53.2 (CO₂CH₃), 53.7 (CO₂CH₃), 60.1, 74.5, 110.7, 111.7, 125.5, 126.8, 127.1, 128.2, 128.5, 129.0, 129.3, 131.3, 135.1, 138.0, 151.4, 158.5, 158.9, 162.2 ppm. IR (KBr): $\tilde{\nu}$ =3100, 3080, 3040, 2970, 2940, 2880, 1740, 1650, 1450, 1435, 1320, 1275, 1205, 1155, 1125, 1090, 1035, 1000, 770, 750, 700 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=236 (19 600), 316 (3550) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): m/z (%)=492.4 (13) [M⁺], 415.4 (100) [M⁺-C₆H₅], 357.3 (12). C₂₉H₂₄N₄O₄ (492.5): calcd C 70.72, H 4.91, N 11.38; found C 70.43, H 4.97, N 11.23.

3,3-Dicyano-5,8b-bis-(4-trifluoromethyl-phenyl)-6,7,8,8b-tetrahydro-3*H***-3a,4-diaza***-as***-indacene-1,2-dicarboxylic acid dimethyl ester (18e).** ¹H NMR (250 MHz, CDCl₃): δ =2.05–2.30 (m, 2H, CH₂), 2.51–2.63 (m, 1H, CH₂), 2.79–2.97 (m, 3H, CH₂), 3.79 (s, 3H, CO₂CH₃), 4.01 (s, 3H, CO₂CH₃), 7.43–7.46 (m, 2H, aryl-H), 7.62–7.74 (m, 6H, aryl-H) ppm. IR (KBr): $\tilde{\nu}$ =3080, 2970, 2940, 2860, 1740, 1730, 1660, 1645, 1615, 1440, 1410, 1325, 1280, 1165, 1130, 1070, 1020, 850 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=242 (25 300), 324 (4400) nm (1 mol⁻¹ cm⁻¹). EI MS (70 eV): *m/z* (%)=614.4 (4) [M⁺], 469.4 (100) [M⁺-C₆H₄CF₃]. C₃₀H₂₀F₆N₄O₄ (614.5): calcd C 58.64, H 3.28, N 9.12; found C 58.40, H 3.38, N 9.00.

Following the general procedure, 0.21 mmol 13b and 0.69 mmol 6 were heated in 5 ml acetonitrile at 80°C for 35 h. Fcc (CH₂Cl₂, silica gel 60) and recrystallization from CH₂Cl₂/hexane yielded 0.17 mmol (82%) 3,3-dicyano-5,5dimethyl-6-(4-methyl-benzoyl)-7a-p-tolyl-5,7a-dihydropyrrolizine-1,2-dicarboxylic acid dimethyl ester (19a), mp 191°C. ¹H NMR (250 MHz, CDCl₃): δ =1.20 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.32 (s, 3H, tolyl-CH₃), 2.44 (s, 3H, tolyl-CH₃), 3.59 (s, 3H, CO₂CH₃), 3.95 (s, 3H, CO₂CH₃), 7.03 (s, 1H, olefinic-H), 7.07-7.24 (m, 4H, aryl-H), 7.30-7.33 (m, 2H, aryl-H), 7.81-7.85 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.13 (CH₃), 21.17 (CH₃), 21.66 (CH₃), 31.73 (CH₃), 53.04 (CO₂CH₃), 53.45 (CO₂CH₃), 58.41, 70.79, 86.71, 113.47, 113.88, 125.68, 126.22, 129.42, 129.49, 129.67, 135.19, 136.24, 136.61, 139.15, 144.26, 149.75, 150.41, 158.61, 162.10, 191.62 ppm. IR (KBr): $\tilde{\nu}$ =3090, 3030, 3000, 2960, 2930, 1725, 1650, 1640, 1320, 1270, 1175 cm^{-1} . UV/Vis (dioxane): λ_{max} (ϵ)=241 (16 900), 270 (14 900) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=509 (9) $[M^+]$, 494 (17) $[M^+-CH_3]$, 418 (6) $[M^+-C_7H_7]$, 119 (100) $[C_7H_7CO^+]$, 91 (14) $[C_7H_7^+]$. $C_{30}H_{27}N_3O_5$ (509.6): calcd C 70.71, H 5.34, N 8.25; found C 70.57, H 5.00, N 8.29.

Following the general procedure, 0.36 mmol 13d and 2.39 mmol 6 were heated in 10 ml acetone at 80°C for 16 h. Recrystallization from petroleum ether (40-60)/diethyl ether/CH₂Cl₂ yielded 0.27 mmol (75%) 3,3dicyano-5,5-dimethyl-6-benzoyl-7a-phenyl-5,7a-dihydropyrrolizine-1,2-dicarboxylic acid dimethyl ester (19b), mp 193–194°C. ¹H NMR (400 MHz, CDCl₃): δ =1.21 (s, 3H, CH₃), 2.08 (s, 3H, CH₃), 3.57 (s, 3H, CO₂CH₃), 3.95 (s, 3H, CO₂CH₃), 7.08 (s, 1H, olefinic-H), 7.28-7.37 (m, 5H, aryl-H), 7.50-7.54 (m, 2H, aryl-H), 7.61-7.65 (m, 1H, aryl-H), 7.91–7.94 (m, 2H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.1 (CH₃), 31.6 (CH₃), 53.1 (CO₂CH₃), 53.6 (CO₂CH₃), 58.3, 70.7, 86.7, 113.3, 113.6, 125.6, 126.2, 128.7, 129.0, 129.2, 129.3, 133.3, 136.7, 137.6, 139.4, 149.6, 150.4, 158.7, 162.1, 191.9 ppm. IR (KBr): $\tilde{\nu}$ =3100-2970, 1760, 1730, 1640, 1595, 1445, 1350-1250, 1150, 730, 700 cm⁻¹. UV/Vis (dioxane): λ_{max} $(\epsilon)=204$ (9590), 212 (22 000), 242 (17 600) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=481.9 (0.7) $[M^+]$, 433.9 (4), 403.9 (5), 105.0 (100) $[C_6H_5CO^+]$, 77.1 (32), 51.2 (6). C₂₈H₂₃N₃O₅ (481.5): calcd C 69.85, H 4.81, N 8.73; found C 69.58, H 4.97, N 8.77.

To a boiling suspension of 0.30 mmol **13b** in 8 ml CH₂Cl₂ benzene diazonium-2-carboxylate (suspension in CH₂Cl₂) was added until a colourless solution was obtained. After evaporation of the solvent fcc (CH₂Cl₂, silica gel 60) and recrystallization from ethanol/water yielded 0.10 mmol (32%) 3,3-dimethyl-2-(4-methyl-benzoyl)-9b-p-tolyl-3,9bdihydro-pyrrolo[2,1-a]isoindole-5,5-dicarbonitrile (20), mp 177°C. ¹H NMR (250 MHz, CDCl₃): δ =1.29 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 2.30 (s, 3H, tolyl-CH₃), 2.39 (s, 3H, tolyl-CH₃), 6.95 (s, 1H, olefinic-H), 7.03-7.90 (m, 12H, aryl-H) ppm. ¹³C NMR (63 MHz, CDCl₃): δ =21.04 (CH₃), 21.59 (CH₃), 21.86 (CH₃), 31.12 (CH₃), 57.61, 70.43, 84.47, 115.22, 116.04, 122.42, 124.98, 125.90, 129.24, 129.41, 129.46, 129.80, 131.75, 134.15, 135.61, 142.16, 137.92. 139.39. 143.06, 143.79, 149.67. 191.95 ppm. IR (KBr): $\tilde{\nu}$ =3010, 2960, 2940, 2880, 1640, 1600, 1320, 750 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=225 $(25\ 300),\ 267\ (14\ 600)\ nm\ (1\ mol^{-1}\ cm^{-1}).$ EI MS $(70\ eV)$: m/z (%)=443 (2) [M⁺], 428 (6) [M⁺-CH₃], 352 (5) $[M^+ - C_7 H_7]$, 119 (100) $[C_7 H_7 CO^+]$, 91 (34) $[C_7 H_7^+]$, 65 (10) $[C_5H_5^+]$. $C_{30}H_{25}N_3O$ (443.6): calcd C 81.24, H 5.68, N 9.47; found C 80.91, H 5.88, N 9.41.

Following the general procedure, 0.20 mmol 13b and 1.47 mmol 1,1-bis-ethoxy-ethene (8a) in 2 ml acetonitrile were stirred at rt for 96 h. Fcc (CH₂Cl₂, silica gel 60) and recrystallization from CH2Cl2/hexane yielded 0.11 mmol (56%) 2,2-bis-ethoxy-5,5-dimethyl-6-(4-methyl-benzoyl)-7a-p-tolyl-1,2,5,7a-tetrahydro-pyrrolizine-3,3-dicarbonitrile (21), mp 180–181°C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.19$ (t, 3H, ³J=7.0 Hz, CH₃CH₂O), 1.28 (s, 3H, CH₃), 1.30 (t, 3H, ${}^{3}J=7.0$ Hz, CH₃CH₂O), 2.00 (s, 3H, CH₃), 2.30 (s, 3H, tolyl-CH₃), 2.43 (s, 3H, tolyl-CH₃), 2.60 (d, 1H, $^{2}J=14.1$ Hz, CH₂), 2.77 (d, 1H, $^{2}J=14.1$ Hz, CH₂), 2.97 $(dq, 1H, {}^{2}J=8.7 Hz, {}^{3}J=7.0 Hz, CH_{3}CH_{2}O), 3.42 (dq, 1H,$ J=8.7 Hz, $^{3}J=7.0$ Hz, CH₃CH₂O), 3.88–4.00 (m, 2H, CH₃CH₂O), 6.78 (s, 1H, olefinic-H), 7.07-7.09 (m, 2H, aryl-H), 7.27-7.29 (m, 2H, aryl-H), 7.32-7.34 (m, 2H, aryl-H), 7.75-7.85 (m, 2H, aryl-H) ppm. ¹³C NMR CDCl₃): $\delta = 14.28$ $(CH_3CH_2O),$ (63 MHz, 15.05 (CH₃CH₂O), 20.81 (CH₃), 20.95 (tolyl-CH₃), 21.61 (tolyl-CH₃), 31.41 (CH₃), 44.31 (CH₂), 59.02 (CH₃CH₂O), 59.43 (CH₃CH₂O), 61.64, 70.97, 76.56, 108.86, 114.47, 115.61, 125.64, 128.93, 129.20, 129.41, 136.18, 136.97, 142.27, 142.83 (olefinic-CH), 143.62, 146.58, 192.57 ppm. IR (KBr): $\tilde{\nu}$ =3080, 3050, 3000, 2950, 2920, 1635, 1605, 1330, 1315, 1300, 1250, 1190, 1150, 1125, 1095, 1045, 820, 760 cm⁻¹. UV/Vis (dioxane): λ_{max} (ϵ)=265 (14 400) nm $(1 \text{ mol}^{-1} \text{ cm}^{-1})$. EI MS (70 eV): m/z (%)=483 (0.2) $[M^+]$, 468 (2) $[M^+-CH_3]$, 368 (13), 367 (46) $[M^+ - (EtO)_2C_2H_2]$, 288 (12) [Ylid⁺-(CN)_2C-Me], 120 (10), 119 (100) $[C_7H_7-CO^+]$, 91 (16) $[C_7H_7^+]$. $C_{30}H_{33}N_3O_3$ (483.6): calcd C 74.51, H 6.88, N 8.69; found C 74.20, H 6.88. N 8.63.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft

(DFG), the Fonds der Chemischen Industrie and the BASF AG for financial support of this research.

References

1. Surpateau, G.; Lablache-Combier, A. *Heterocycles* 1984, 22, 2079–2128.

2. Vedejs, E. In *Advances in Cycloaddition*; Curran, D. P., Ed.; JAI: London, 1993; Vol. 3, pp 33–51.

3. Tsuge, O.; Kanemasa, S. In *Advances in Heterocyclic Chemistry*; Katritzky, A. L., Ed.; Academic: New York, 1989; Vol. 5, pp 231–349.

4. Kanemasa, S.; Tsuge, O. In Advances in Cycloaddition; Curran,

D. P., Ed.; JAI: London, 1993; Vol. 3, pp 99–159.

5. Grigg, R.; Sridhan, V. In Advances in Cycloaddition; Curran,

D. P., Ed.; JAI: London, 1993; Vol. 3, pp 161-204.

6. Riebel, P.; Weber, A.; Troll, T.; Sauer, J.; Breu, J. *Tetrahedron Lett.* **1996**, *37*, 1583–1586.

7. Breu, J.; Range, K. J.; Riebel, P.; Weber, A.; Troll, T.; Sauer, J. *Acta Crystallogr. Sect. C* **1996**, *52*, 2053–2056.

8. Riebel, P.; Weber, A.; Troll, T.; Sauer, J.; Breu, J.; Nöth, M. *Tetrahedron Lett.* **1996**, *37*, 1587–1590.

9. Böhm, T.; Elender, K.; Riebel, P.; Troll, T.; Weber, A.; Sauer, J. *Tetrahedron* **1999**, *55*, 9515–9534.

10. Böhm, T.; Weber, A.; Sauer, J. *Tetrahedron* **1999**, *55*, 9535–9558.

11. Elender, K.; Riebel, P.; Weber, A.; Sauer, J. *Tetrahedron* **2000**, *56*, 4261–4265.

12. Sauer, J. 1,2,4,5-Tetrazines. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 6, pp 901–957.

13. Sashi, T.; Kanematsu, K.; Yukimoto, Y.; Ochiai, S. J. Org. Chem. 1971, 36, 813–818.

14. Riebel, P. PhD Thesis, University of Regensburg, 1996.

15. Weber, A. PhD Thesis, University of Regensburg, 1997.

16. Elender, K. PhD Thesis, University of Regensburg, 1998.

17. Breu, J.; Range, K.-J.; Weber, A.; Sauer, J. Acta Crystallogr. C **1998**, *54*, 509–513.

18. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-144200. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-1223/336-033; e-mail: deposit@ccdc. cam.ac.uk].